Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Li-Fang Wang is active.

Publication


Featured researches published by Li-Fang Wang.


Biomaterials | 2009

Folic acid–Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications

Jia-Jyun Lin; Jenn-Shing Chen; Shih-Jer Huang; Jyun-Han Ko; Yu-Ming Wang; Ting-Lung Chen; Li-Fang Wang

Superparamagnetic iron oxides possess specific magnetic properties in the presence of an external magnetic field, which make them an attractive platform as contrast agents for magnetic resonance imaging (MRI) and as carriers for drug delivery. In this study, we investigate the drug delivery and the MRI properties of folate-mediated water-soluble iron oxide incorporated into micelles. Pluronic F127 (PF127), which can be self-assembled into micelles upon increasing concentration or raising temperatures, is used to decorate water-soluble polyacrylic acid-bound iron oxides (PAAIO) via a chemical reaction. Next, the hydrophobic dye Nile red is encapsulated into the hydrophobic poly(propylene oxide) compartment of PF127 as a model drug and as a fluorescent agent. Upon encapsulation, PAAIO retains its superparamagnetic characteristics, and thus can be used for MR imaging. A tumor-specific targeting ligand, folic acid (FA), is conjugated onto PF127-PAAIO to produce a multifunctional superparamagnetic iron oxide, FA-PF127-PAAIO. FA-PF127-PAAIO can be simultaneously applied as a diagnostic and therapeutic agent that specifically targets cancer cells that overexpress folate receptors in their cell membranes. PF127-PAAIO is used as a reference group. Based on FTIR and UV-vis absorbance spectra, the successful synthesis of PF127-PAAIO and FA-PF127-PAAIO is realized. The magnetic nanoparticle clusters of PF127-PAAIO and FA-PF127-PAAIO are visualized by transmission electron microscope (TEM). FA-PF127-PAAIO, together with a targeting ligand, displays a higher intracellular uptake into KB cells. This result is confirmed by laser confocal scanning microscopy (CLSM), flow cytometry, and atomic absorption spectroscopy (AAS) studies. The hysteresis curves, generated by using a superconducting quantum interference device (SQUID) magnetometer analysis, demonstrate that the magnetic nanoparticles are superparamagnetic with insignificant hysteresis. The MTT assay explains the negligible cell cytotoxicity of PF127-PAAIO and FA-PF127-PAAIO. In KB cells, the in vitro MRI study indicates the better T(2)-weighted images in FA-PF127-PAAIO than in PF127-PAAIO.


European Journal of Pharmaceutical Sciences | 2009

Folate-mediated chondroitin sulfate-Pluronic® 127 nanogels as a drug carrier

Shih-Jer Huang; Shuo-Li Sun; Tzu-Hua Feng; Kuo-Hsun Sung; Wen-Ling Lui; Li-Fang Wang

Pluronic F127 (PF127), one of the polymers which can inhibit drug efflux transporters in cancer therapy, was used to produce amphiphilic nanocarriers for doxorubicin (DOX). In order to stabilize the nanocarriers, the hydroxyl groups on both termini of PF127 were acrylated and reacted with methacrylated chondroitin sulfate (CSMA) to form CS-PF127 nanogel. The introducing CSMA has carboxylic acid groups which can be used to react with a folic acid-polyethylene glycol (FA-PEG). Folic acid, having high binding affinity to tumor-associated folate receptors (FR), provides a selective delivery of doxorubicin (DOX) to FR-positive tumor cells. DOX was loaded either in a cationic DOX.HCl form through the electrostatic interactions with the negative charges of chondroitin sulfate, or in a free DOX form by solubilization into the PPO core compartment of PF127. The loading efficiency and release behavior of DOX prepared from two different formulations are compared. The synthesis of CS-PF127 and FA-PEG grafted CS-PF127 (FA-CS-PF127) was characterized by nuclear magnetic resonance spectrometry (NMR), ultraviolet/visible spectroscopy (UV), and X-ray photoelectron spectroscopy (XPS). With a fluorescent probe technique, the critical aggregation concentrations (CAC) are 7.5 x 10(-2)mg/mL for CS-PF127 and 7.9 x 10(-2)mg/mL for FA-CS-PF127, respectively. The spherical images of nanogels were visualized with the use of the transmission electron microscope (TEM). The particle diameters measured by dynamic light scattering (DLS) are 299.6+/-8.2nm for CS-PF127 and 138.3+/-12.3 for FA-CS-PF127, neither aggregation nor change in sizes in double deionized (DD) water after 20 days. The better cellular uptake of FA-CS-PF127 in KB cells was evidenced by confocal laser scanning microscopy (CLSM) and flow cytometry upon loading Rhodamine123 as a probe.


Journal of Biomedical Materials Research Part A | 2009

Poly(ethylene imine)‐g‐chitosan using EX‐810 as a spacer for nonviral gene delivery vectors

Yu-Lun Lou; Yu-Shiang Peng; Bing-Hung Chen; Li-Fang Wang; Kam W. Leong

Polyelectrolyte complexes have been widely studied as gene carriers in recent years. In this study, poly (ethylene imine) was grafted onto chitosan (PEI-g-CHI) as a nonviral gene carrier in order to improve the water solubility as well as the inherent transfection efficiency of chitosan. We present a novel method to conjugate the amine or hydroxyl groups of chitosan (CHI) and the amine groups of PEI through opening the epoxide rings of ethylene glycol diglycidyl ether (EX-810), which also brings the merits as mentioned in PEGylation chemistry. The degree of substitution of PEI onto CHI was characterized by NMR. The preliminarily cellular mechanisms, from the cellular entry to the endosomal release, were investigated by the correlations among the physicochemical properties of the DNA-polymer complexes, the buffering capacity of the modified polymer, the cytotoxicity, and the efficiency of the transgene expression. The cytotoxicity assayed by MTT shows that cell viability of PEI-g-CHI is higher than CHI especially noticeable at high concentrations using human kidney 293T cells. The efficiency of transgene expression and the amount of intracellular plasmid were monitored using green fluorescent protein (GFP) and visualized by fluorescence microscopy. The transfection efficiency of PEI-g-CHI/DNA polyplex is significantly better than CHI/DNA polyplex when using the weight ratios higher than 2.5.


Biomaterials | 2010

A specific tumor-targeting magnetofluorescent nanoprobe for dual-modality molecular imaging

Jyun-Han Ke; Jia-Jyun Lin; James R. Carey; Jenn-Shing Chen; Chiao-Yun Chen; Li-Fang Wang

Poly(acrylic acid) was decorated onto Fe(3)O(4) resulting in a highly water-soluble superparamagnetic iron oxide. The Poly(acrylic acid) iron oxide (PAAIO) complexes possess specific magnetic properties in the presence of an external magnetic field and are attractive contrast agents for magnetic resonance imaging (MRI). The free carboxylic groups of PAAIO exposed on the surface allow for covalent attachment of a fluorescent dye, Rhodamine 123 (Rh123) to form PAAIO-Rh123, which permits applications in fluorescence imaging. PAAIO-Rh123 is therefore a dual-modality molecular probe. In order to endow specific properties to compounds that target cancer cells and to prevent recognition by the reticuloendothelial system (RES), folic acid-linked poly(ethylene glycol) (FA-PEG) was further conjugated onto PAAIO-Rh123. The amounts of Rh123 and FA-PEG on the modified iron oxides were quantitatively determined by elemental analysis. The iron content was determined by inductively coupled plasma-optical emission spectrometer (ICP-OES). The particle diameters were characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). Superparamagnetism was confirmed by the superconducting quantum interference device (SQUID) magnetometer. The cellular internalization efficacy of the modified iron oxides was realized in folate-overexpressed FR(+) and folate-deficient FR(-) KB cells by flow cytometry and confocal laser scanning microscopy (CLSM). The quantitative amount of iron internalized into different harvested KB cells was measured by ICP-OES. The T(2)-weighted MR images were tested in FR(+) KB cells.


Nanomedicine: Nanotechnology, Biology and Medicine | 2011

Succinated chitosan as a gene carrier for improved chitosan solubility and gene transfection.

Elsie Khai-Woon Toh; Hsing-Yin Chen; Yu-Lun Lo; Shih-Jer Huang; Li-Fang Wang

UNLABELLEDnChitosan (CHI), a linear polysaccharide, has been intensively studied as a nonviral gene delivery vector. The low physiological solubility of CHI has limited its gene transfection efficiency. Here we report the synthesis of different substitution degrees of succinated chitosans (CHI-succ) to increase water solubility. According to the proton nuclear magnetic resonance spectra, the degree of deacetylation of hydrolyzed CHI was roughly 88% and the degrees of succinylation in three CHI-succ polymers were approximately 5, 10, and 20%. Various weight ratios of CHI/DNA and CHI-succ/DNA polyplexes were prepared for gel electrophoresis retardation, particle size, zeta potential, and morphology studies. The results suggest that the plasmid DNA is readily entrapped at a CHI-succ/DNA weight ratio of 20; the sizes and zeta potentials were between 110 and 140 nm and ±1-5 mV, and the polyplexes exhibited low cytotoxicity against HEK 293T cells. CHI-succ with 5 and 10% degrees of substitution showed improved transfection efficiency as compared with nascent CHI.nnnFROM THE CLINICAL EDITORnChitosan, a cationic polysacchride with gene therapy potential, has inherently poor water solubility, which is improved by partial succinylation according to this report. The new DNA/Chitosan polyplexes exhibit improved safety against HEK 293T cells.


Molecular Pharmaceutics | 2013

Chemically conjugating polyethylenimine with chondroitin sulfate to promote CD44-mediated endocytosis for gene delivery.

Yu-Lun Lo; Kuo-Hsun Sung; Chien-Chih Chiu; Li-Fang Wang

Polyethylenimine (PEI) is one of the most potent synthetic gene delivery vectors because of its high transfection efficiency. Although PEI has been used as a delivery vehicle for a long while, its toxicity is always an issue for clinical applications. In this study, we introduced a low molecular weight PEI of 10 kilodaltons to chondroitin sulfate (CS) via a Michael addition method. By adjusting weight ratios between cationic PEI and anionic CS, the intermolecular or intramolecular, or both, electrostatic interactions of CS-modified PEI (CP) maintained good water solubility but lost some ability to permeate cell membranes. Thus, the cytotoxicity of PEI decreased without sacrificing its gene transfection efficiency. Three CP copolymers with different PEI contents were synthesized and used to prepare polyplexes with plasmid DNA. The pDNA-formed polyplex with a low PEI content (CP(L)) was least cytotoxic and had a transfection efficiency comparable to Lipofectamine/pDNA. The good uptake of CP(L)/pDNA into U87 cells was primarily based on clatherin-dependent and CD44-mediated endocytosis.


International Journal of Nanomedicine | 2014

Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier

Yu-Shiang Peng; Po-Liang Lai; Sydney Peng; His-Chin Wu; Siang Yu; Tsan-Yun Tseng; Li-Fang Wang; I-Ming Chu

Parkinson’s disease is known to result from the loss of dopaminergic neurons. Direct intracerebral injections of high doses of recombinant glial cell line-derived neurotrophic factor (GDNF) have been shown to protect adult nigral dopaminergic neurons. Because GDNF does not cross the blood–brain barrier, intracerebral gene transfer is an ideal option. Chitosan (CHI) is a naturally derived material that has been used for gene transfer. However, the low water solubility often leads to decreased transfection efficiency. Grafting of highly water-soluble polyethylene imines (PEI) and polyethylene glycol onto polymers can increase their solubility. The purpose of this study was to design a non-viral gene carrier with improved water solubility as well as enhanced transfection efficiency for treating Parkinsonism. Two molecular weights (Mw =600 and 1,800 g/mol) of PEI were grafted onto CHI (PEI600-g-CHI and PEI1800-g-CHI, respectively) by opening the epoxide ring of ethylene glycol diglycidyl ether (EX-810). This modification resulted in a non-viral gene carrier with less cytotoxicity. The transfection efficiency of PEI600-g-CHI/deoxyribonucleic acid (DNA) polyplexes was significantly higher than either PEI1800-g-CHI/DNA or CHI/DNA polyplexes. The maximal GDNF expression of PEI600-g-CHI/DNA was at the polymer:DNA weight ratio of 10:1, which was 1.7-fold higher than the maximal GDNF expression of PEI1800-g-CHI/DNA. The low toxicity and high transfection efficiency of PEI600-g-CHI make it ideal for application to GDNF gene therapy, which has potential for the treatment of Parkinson’s disease.


Journal of Biomaterials Science-polymer Edition | 2005

Oral sustained delivery of diclofenac sodium using calcium chondroitin sulfate matrix

Ming-Fung Tsai; Ya-Ling Chiang; Li-Fang Wang; Gao-Wei Huang; Pao-Chu Wu

Chondroitin sulfate (CS) is a potential candidate for colon-specific drug carriers. However, the readily water-soluble nature limits its application as a solid-state drug-delivery vehicle. In this study, the CS formation of a polyelectrolyte complex (PEC) with Ca2+ (CS-Ca) was adapted to retain CS in a solid form for use in a drug-delivery system. Pre-treated CS with poly(ethylene glycol) diglycidyl ether (EX-810) followed by complexation with Ca2+ was also tested (CS-Ca-EX). Diclofenac sodium was used as a drug probe to evaluate the performance of the drug-release behavior of the complexes. The amount of diclofenac sodium released was higher in simulated intestinal fluid (SIF) than in simulated gastric fluid (SGF) due to the anionic groups on CS or the higher solubility of drug itself in PBS. The release profile of diclofenac sodium from CS-Ca-EX was most notably sustained when compared to other groups. Enzymatic degradation by chondroitinase ABC of CS, CS-Ca and CS-Ca-EX exhibited a similar degradation mechanism and GPC revealed the dissolution rate of CS from the three matrix types was, in decreasing order: CS, CS-Ca, CS-Ca-EX. The synergy of the anti-inflammatory activity of diclofenac sodium in CS-based complexes was evaluated using the carrageenan-induced edema rat test. The percentage of swelling was lower for all experimental groups as compared to the control, untreated group. The anti-inflammatory activity of diclofenac in the CS matrix gradually increased up to 9 h but CS-Ca or CS-Ca-EX matrices showed less potency than the CS matrix in reducing inflammation.


International Journal of Nanomedicine | 2013

Pentablock copolymers of pluronic F127 and modified poly(2-dimethyl amino)ethyl methacrylate for internalization mechanism and gene transfection studies

Shih-Jer Huang; Tzu-Pin Wang; Sheng-I Lue; Li-Fang Wang

Cationic polymers are one of the major nonviral gene delivery vectors investigated in the past decade. In this study, we synthesized several cationic copolymers using atom transfer radical polymerization (ATRP) for gene delivery vectors: pluronic F127-poly(dimethylaminoethyl methacrylate) (PF127-pDMAEMA), pluronic F127-poly (dimethylaminoethyl methacrylate-tert-butyl acrylate) (PF127-p(DMAEMA-tBA)), and pluronic F127-poly(dimethylaminoethyl methacrylate-acrylic acid) (PF127-p(DMAEMA-AA)). The copolymers showed high buffering capacity and efficiently complexed with plasmid deoxyribonucleic acid (pDNA) to form nanoparticles 80–180 nm in diameter and with positive zeta potentials. In the absence of 10% fetal bovine serum, PF127-p(DMAEMA-AA) showed the highest gene expression and the lowest cytotoxicity in 293T cells. After acrylic acid groups had been linked with a fluorescent dye, the confocal laser scanning microscopic image showed that PF127-p(DMAEMA-AA)/pDNA could efficiently enter the cells. Both clathrin-mediated and caveolae-mediated endocytosis mechanisms were involved. Our results showed that PF127-p(DMAEMA-AA) has great potential to be a gene delivery vector.


Advanced Healthcare Materials | 2013

The copolymer of Poly(2-dimethylaminoethyl methacrylate) and methacrylated chondroitin sulfate with low cytotoxicity for gene delivery.

Yu-Lun Lo; Yao-Sheng Wang; Li-Fang Wang

Poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) is one of the most potent synthetic nonviral gene-delivery vectors because of its high transfection efficiency. However, the cytotoxicity of PDMAEMA is a major concern for its clinical applications. An anionic crosslinker is synthesized based on a natural polysaccharide, chondroitin sulfate (CS), by introducing methacrylate groups (CSMA). By systematically adjusting the substitution degree of methacrylation on CS and the weight percent of CSMA and PDMAEMA, sol-type copolymers are obtained as a gene-delivery vector. The combination of CS and PDMAEMA is expected not only to reduce the cytotoxicity of PDMAEMA, but also to facilitate better transfection efficiency than PDMAEMA because of the recognition of CS by CD44 receptors on cell surfaces. Two CSMA-modified PDMAEMA copolymers with different CSMA constituents are selected and their polyplexes prepared with plasmid DNA. The cytotoxicity and gene transfection efficiency of the polyplexes are tested and compared with those of PDMAEMA/pDNA. The copolymers of CSMA and PDMAEMA show significantly improved cell viability as compared with PDMAEMA. Their formed polyplexes with pDNA also show lower cytotoxicity than does PDMAEMA/pDNA. The transfection efficiency remarkably increases as the CSMA-modified PDMAEMA/pDNA polyplex is prepared at a weight ratio of 2.4. The internalization mechanism of CSMA-modified PDMAEMA/pDNA in HEK 293T cells is mainly based on caveolae-mediated endocytosis. However, both caveolae-mediated and CD44-mediated endocytosis mechanisms are involved in U87 cells.

Collaboration


Dive into the Li-Fang Wang's collaboration.

Top Co-Authors

Avatar

Shih-Jer Huang

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Jenn-Shing Chen

National University of Kaohsiung

View shared research outputs
Top Co-Authors

Avatar

Yu-Lun Lo

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Yu-Shiang Peng

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Chien-Chih Chiu

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Jia-Jyun Lin

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Yu-Ming Wang

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Bing-Hung Chen

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Chiao-Yun Chen

Kaohsiung Medical University

View shared research outputs
Top Co-Authors

Avatar

Elsie Khai-Woon Toh

Kaohsiung Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge