Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Li Fei-Fei is active.

Publication


Featured researches published by Li Fei-Fei.


computer vision and pattern recognition | 2009

ImageNet: A large-scale hierarchical image database

Jia Deng; Wei Dong; Richard Socher; Li-Jia Li; Kai Li; Li Fei-Fei

The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.


computer vision and pattern recognition | 2004

Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories

Li Fei-Fei; Rob Fergus; Pietro Perona

Current computational approaches to learning visual object categories require thousands of training images, are slow, cannot learn in an incremental manner and cannot incorporate prior information into the learning process. In addition, no algorithm presented in the literature has been tested on more than a handful of object categories. We present an method for learning object categories from just a few training images. It is quick and it uses prior information in a principled way. We test it on a dataset composed of images of objects belonging to 101 widely varied categories. Our proposed method is based on making use of prior information, assembled from (unrelated) object categories which were previously learnt. A generative probabilistic model is used, which represents the shape and appearance of a constellation of features belonging to the object. The parameters of the model are learnt incrementally in a Bayesian manner. Our incremental algorithm is compared experimentally to an earlier batch Bayesian algorithm, as well as to one based on maximum-likelihood. The incremental and batch versions have comparable classification performance on small training sets, but incremental learning is significantly faster, making real-time learning feasible. Both Bayesian methods outperform maximum likelihood on small training sets.


International Journal of Computer Vision | 2008

Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words

Juan Carlos Niebles; Hongcheng Wang; Li Fei-Fei

We present a novel unsupervised learning method for human action categories. A video sequence is represented as a collection of spatial-temporal words by extracting space-time interest points. The algorithm automatically learns the probability distributions of the spatial-temporal words and the intermediate topics corresponding to human action categories. This is achieved by using latent topic models such as the probabilistic Latent Semantic Analysis (pLSA) model and Latent Dirichlet Allocation (LDA). Our approach can handle noisy feature points arisen from dynamic background and moving cameras due to the application of the probabilistic models. Given a novel video sequence, the algorithm can categorize and localize the human action(s) contained in the video. We test our algorithm on three challenging datasets: the KTH human motion dataset, the Weizmann human action dataset, and a recent dataset of figure skating actions. Our results reflect the promise of such a simple approach. In addition, our algorithm can recognize and localize multiple actions in long and complex video sequences containing multiple motions.


computer vision and pattern recognition | 2014

Large-Scale Video Classification with Convolutional Neural Networks

Andrej Karpathy; George Toderici; Sanketh Shetty; Thomas Leung; Rahul Sukthankar; Li Fei-Fei

Convolutional Neural Networks (CNNs) have been established as a powerful class of models for image recognition problems. Encouraged by these results, we provide an extensive empirical evaluation of CNNs on large-scale video classification using a new dataset of 1 million YouTube videos belonging to 487 classes. We study multiple approaches for extending the connectivity of a CNN in time domain to take advantage of local spatio-temporal information and suggest a multiresolution, foveated architecture as a promising way of speeding up the training. Our best spatio-temporal networks display significant performance improvements compared to strong feature-based baselines (55.3% to 63.9%), but only a surprisingly modest improvement compared to single-frame models (59.3% to 60.9%). We further study the generalization performance of our best model by retraining the top layers on the UCF-101 Action Recognition dataset and observe significant performance improvements compared to the UCF-101 baseline model (63.3% up from 43.9%).


computer vision and pattern recognition | 2015

Deep visual-semantic alignments for generating image descriptions

Andrej Karpathy; Li Fei-Fei

We present a model that generates natural language descriptions of images and their regions. Our approach leverages datasets of images and their sentence descriptions to learn about the inter-modal correspondences between language and visual data. Our alignment model is based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural Networks over sentences, and a structured objective that aligns the two modalities through a multimodal embedding. We then describe a Multimodal Recurrent Neural Network architecture that uses the inferred alignments to learn to generate novel descriptions of image regions. We demonstrate that our alignment model produces state of the art results in retrieval experiments on Flickr8K, Flickr30K and MSCOCO datasets. We then show that the generated descriptions significantly outperform retrieval baselines on both full images and on a new dataset of region-level annotations.


Computer Vision and Image Understanding | 2007

Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories

Li Fei-Fei; Rob Fergus; Pietro Perona

Current computational approaches to learning visual object categories require thousands of training images, are slow, cannot learn in an incremental manner and cannot incorporate prior information into the learning process. In addition, no algorithm presented in the literature has been tested on more than a handful of object categories. We present an method for learning object categories from just a few training images. It is quick and it uses prior information in a principled way. We test it on a dataset composed of images of objects belonging to 101 widely varied categories. Our proposed method is based on making use of prior information, assembled from (unrelated) object categories which were previously learnt. A generative probabilistic model is used, which represents the shape and appearance of a constellation of features belonging to the object. The parameters of the model are learnt incrementally in a Bayesian manner. Our incremental algorithm is compared experimentally to an earlier batch Bayesian algorithm, as well as to one based on maximum-likelihood. The incremental and batch versions have comparable classification performance on small training sets, but incremental learning is significantly faster, making real-time learning feasible. Both Bayesian methods outperform maximum likelihood on small training sets.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2006

One-shot learning of object categories

Li Fei-Fei; Rob Fergus; Pietro Perona

Learning visual models of object categories notoriously requires hundreds or thousands of training examples. We show that it is possible to learn much information about a category from just one, or a handful, of images. The key insight is that, rather than learning from scratch, one can take advantage of knowledge coming from previously learned categories, no matter how different these categories might be. We explore a Bayesian implementation of this idea. Object categories are represented by probabilistic models. Prior knowledge is represented as a probability density function on the parameters of these models. The posterior model for an object category is obtained by updating the prior in the light of one or more observations. We test a simple implementation of our algorithm on a database of 101 diverse object categories. We compare category models learned by an implementation of our Bayesian approach to models learned from by maximum likelihood (ML) and maximum a posteriori (MAP) methods. We find that on a database of more than 100 categories, the Bayesian approach produces informative models when the number of training examples is too small for other methods to operate successfully.


international conference on computer vision | 2005

Learning object categories from Google's image search

Rob Fergus; Li Fei-Fei; Pietro Perona; Andrew Zisserman

Current approaches to object category recognition require datasets of training images to be manually prepared, with varying degrees of supervision. We present an approach that can learn an object category from just its name, by utilizing the raw output of image search engines available on the Internet. We develop a new model, TSI-pLSA, which extends pLSA (as applied to visual words) to include spatial information in a translation and scale invariant manner. Our approach can handle the high intra-class variability and large proportion of unrelated images returned by search engines. We evaluate tire models on standard test sets, showing performance competitive with existing methods trained on hand prepared datasets


international conference on computer vision | 2007

What, where and who? Classifying events by scene and object recognition

Li-Jia Li; Li Fei-Fei

We propose a first attempt to classify events in static images by integrating scene and object categorizations. We define an event in a static image as a human activity taking place in a specific environment. In this paper, we use a number of sport games such as snow boarding, rock climbing or badminton to demonstrate event classification. Our goal is to classify the event in the image as well as to provide a number of semantic labels to the objects and scene environment within the image. For example, given a rowing scene, our algorithm recognizes the event as rowing by classifying the environment as a lake and recognizing the critical objects in the image as athletes, rowing boat, water, etc. We achieve this integrative and holistic recognition through a generative graphical model. We have assembled a highly challenging database of 8 widely varied sport events. We show that our system is capable of classifying these event classes at 73.4% accuracy. While each component of the model contributes to the final recognition, using scene or objects alone cannot achieve this performance.


european conference on computer vision | 2016

Perceptual Losses for Real-Time Style Transfer and Super-Resolution

Justin Johnson; Alexandre Alahi; Li Fei-Fei

We consider image transformation problems, where an input image is transformed into an output image. Recent methods for such problems typically train feed-forward convolutional neural networks using a per-pixel loss between the output and ground-truth images. Parallel work has shown that high-quality images can be generated by defining and optimizing perceptual loss functions based on high-level features extracted from pretrained networks. We combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image transformation tasks. We show results on image style transfer, where a feed-forward network is trained to solve the optimization problem proposed by Gatys et al. in real-time. Compared to the optimization-based method, our network gives similar qualitative results but is three orders of magnitude faster. We also experiment with single-image super-resolution, where replacing a per-pixel loss with a perceptual loss gives visually pleasing results.

Collaboration


Dive into the Li Fei-Fei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jia Deng

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge