Li-Jun Cao
Beijing Forestry University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Li-Jun Cao.
Molecular Ecology | 2015
Shu-Jun Wei; Li-Jun Cao; Yajun Gong; Baocai Shi; Su Wang; Fan Zhang; Xiao-Jun Guo; Yuan-Min Wang; Xue-Xin Chen
The oriental fruit moth (OFM) Grapholita molesta is one of the most destructive orchard pests. Assumed to be native to China, the moth is now distributed throughout the world. However, the evolutionary history of this moth in its native range remains unknown. In this study, we explored the population genetic structure, dispersal routes and demographic history of the OFM in China and South Korea based on mitochondrial genes and microsatellite loci. The Mantel test indicated a significant correlation between genetic distance and geographical distance in the populations. Bayesian analysis of population genetic structure (baps) identified four nested clusters, while the geneland analysis inferred five genetic groups with spatial discontinuities. Based on the approximate Bayesian computation approach, we found that the OFM was originated from southern China near the Shilin area of Yunnan Province. The early divergence and dispersal of this moth was dated to the Penultimate glaciation of Pleistocene. Further dispersal from southern to northern region of China occurred before the last glacial maximum, while the expansion of population size in the derived populations in northern region of China occurred after the last glacial maximum. Our results indicated that the current distribution and structure of the OFM were complicatedly influenced by climatic and geological events and human activities of cultivation and wide dissemination of peach in ancient China. We provide an example on revealing the origin and dispersal history of an agricultural pest insect in its native range as well as the underlying factors.
International Journal of Molecular Sciences | 2016
You-Zhu Wang; Li-Jun Cao; Jia-Ying Zhu; Shu-Jun Wei
The peach fruit moth Carposina sasakii is an economically important pest on dozens of fruits from Rosaceae and Rhamnaceae in Northeast Asia. We developed novel microsatellite markers for C. sasakii from randomly sequenced regions of the genome using next-generation sequencing. In total, 95,153 microsatellite markers were isolated from 4.70 GB genomic sequences. Thirty-five polymorphic markers were developed by assessing in 63 individuals from two geographical populations. The allele numbers ranged from 2 to 9 with an average value of 4.60 per locus, while the polymorphism information content ranged from 0.075 to 0.696 with an average value of 0.407. Furthermore, the observed and expected heterozygosity varied from 0.000 to 0.677 and 0.062 to 0.771, respectively. The microsatellites developed provide abundant molecular markers for investigating genetic structure, genetic diversity, and existence of host-plant associated biotypes of C. sasakii.
Bulletin of Entomological Research | 2015
Li-Jun Cao; Wen Jb; Wei Sj; Liu J; Yang F; Min Chen
This is the first report of microsatellite markers (simple sequence repeats, SSR) for fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae), an important quarantine pest in some European and Asian countries. Here, we developed 48 microsatellite markers for H. cunea from SSR enrichment libraries. Sequences isolated from libraries were sorted into four categories and analyzed. Our results suggest that sequences classified as Grouped should not be used for microsatellite primer design. The genetic diversity of microsatellite loci was assessed in 72 individuals from three populations. The number of alleles per locus ranged from 2 to 5 with an average of 3. The observed and expected heterozygosities of loci ranged from 0 to 0.958 and 0 to 0.773, respectively. A total of 18 out of 153 locus/population combinations deviated significantly from Hardy-Weinberg equilibrium. Moreover, significant linkage disequilibrium was detected in one pair of loci (1275 pairs in total). In the neutral test, two loci were grouped into the candidate category for positive selection and the remainder into the neutral category. In addition, a complex mutation pattern was observed for these loci, and F ST performed better than did R ST for the estimation of population differentiation in different mutation patterns. The results of the present study can be used for population genetic studies of H. cunea.
Molecular Phylogenetics and Evolution | 2018
Bo-Ying Zheng; Li-Jun Cao; Pu Tang; Kees van Achterberg; Ary A. Hoffmann; Hua-Yan Chen; Xue-Xin Chen; Shu-Jun Wei
The Apoidea represent a large and common superfamily of the Hymenoptera including the bees and sphecid wasps. A robust phylogenetic tree is essential to understanding the diversity, taxonomy and evolution of the Apoidea. In this study, features of apoid mitochondrial genomes were used to reconstruct phylogenetic relationships. Twelve apoid mitochondrial genomes were newly sequenced, representing six families and nine subfamilies. Gene rearrangement events have occurred in all apoid mitochondrial genomes sequenced to date. Sphecid wasps have both tRNA and protein-coding gene rearrangements in 5 of 8 species. In bees, the only rearranged genes are tRNAs; long-tongued bees (Apidae + Megachilidae) are characterized by movement of trnA to the trnI-trnQ-trnM tRNA cluster. Phylogenetic analyses of mitochondrial gene sequences support the known paraphyly of sphecid wasps, with bees nested within this clade. The Ampulicidae is sister to the remaining Apoidea. Crabronidae is paraphyletic, split into Crabronidae s.s. and Philanthidae, with the latter group a sister clade to bees. The monophyletic bees are either classified into two clades, long-tongued bees (Apidae + Megachilidae) and short-tongued bees (Andrenidae + Halictidae + Colletidae + Melitidae), or three groups with the Melitidae sister to the other bees. Our study showed that both gene sequences and arrangements provide information on the phylogeny of apoid families.
Bulletin of Entomological Research | 2017
W. Song; Li-Jun Cao; Y.-Z. Wang; B.-Y. Li; S.-J. Wei
The oriental fruit moth (OFM) Grapholita molesta (Lepidoptera: Tortricidae) is an important economic pest of stone and pome fruits worldwide. We sequenced the OFM genome using next-generation sequencing and characterized the microsatellite distribution. In total, 56,674 microsatellites were identified, with 11,584 loci suitable for primer design. Twenty-seven polymorphic microsatellites, including 24 loci with trinucleotide repeat and three with pentanucleotide repeat, were validated in 95 individuals from four natural populations. The allele numbers ranged from 4 to 40, with an average value of 13.7 per locus. A high frequency of null alleles was observed in most loci developed for the OFM. Three marker panels, all of the loci, nine loci with the lowest null allele frequencies, and nine loci with the highest null allele frequencies, were established for population genetics analyses. The null allele influenced estimations of genetic diversity parameters but not the OFMs genetic structure. Both a STRUCTURE analysis and a discriminant analysis of principal components, using the three marker panels, divided the four natural populations into three groups. However, more individuals were incorrectly assigned by the STRUCTURE analysis when the marker panel with the highest null allele frequency was used compared with the other two panels. Our study provides empirical research on the effects of null alleles on population genetics analyses. The microsatellites developed will be valuable markers for genetic studies of the OFM.
Scientific Reports | 2016
Li-Jun Cao; Ze-Min Li; Ze-Hua Wang; Liang Zhu; Yajun Gong; Min Chen; Shu-Jun Wei
Recent improvements in next-generation sequencing technologies have enabled investigation of microsatellites on a genome-wide scale. Faced with a huge amount of candidates, the use of appropriate marker selection criteria is crucial. Here, we used the western flower thrips Frankliniella occidentalis for an empirical microsatellite survey and validation; 132,251 candidate microsatellites were identified, 92,102 of which were perfect. Dinucleotides were the most abundant category, while (AG)n was the most abundant motif. Sixty primer pairs were designed and validated in two natural populations, of which 30 loci were polymorphic, stable, and repeatable, but not all in Hardy–Weinberg equilibrium (HWE) and linkage equilibrium. Four marker panels were constructed to understand effect of marker selection on population genetic analyses: (i) only accept loci with single nucleotide insertions (SNI); (ii) only accept the most polymorphic loci (MP); (iii) only accept loci that did not deviate from HWE, did not show SNIs, and had unambiguous peaks (SS) and (iv) all developed markers (ALL). Although the MP panel resulted in microsatellites of highest genetic diversity followed by the SNI, the SS performed best in individual assignment. Our study proposes stringent criteria for selection of microsatellites from a large-scale number of genomic candidates for population genetic studies.
Evolutionary Applications | 2017
Li-Jun Cao; Ze-Hua Wang; Yajun Gong; Liang Zhu; Ary A. Hoffmann; Shu-Jun Wei
Historical invasion scenarios based on observational records are usually incomplete and biased, but these can be supplemented by population genetic data. The western flower thrips (WFT), Frankliniella occidentalis, invaded China in the last 13 years and has rapidly become one of the most serious pests in the country. To assess whether this invasion involved a single event or multiple events, we examined patterns of genetic diversity and population structure of WFT across 12 Chinese populations and a native US population based on mitochondrial DNA and/or 18 microsatellite loci. The average allelic richness and haplotype diversity in Chinese populations were significantly lower than in a population from its native range. The distribution of mitochondrial haplotypes suggested multiple independent invasions of WFT into China, including two invasions into the Beijing region. Based on microsatellite data, two distinct clusters were identified, with both of them splitting further into two clusters; in the Beijing region, the microsatellite data also provided evidence for two introductions. Both the absence of isolation by distance and the fact that distant populations were similar genetically suggest patterns of WFT movement linked to human activities. Our study therefore suggests multiple introductions of WFT into China and human‐assisted spread.
International Journal of Biological Macromolecules | 2019
Ling Ma; Li-Jun Cao; Yajun Gong; Ary A. Hoffmann; Ai-Ping Zeng; Shu-Jun Wei; Zhong-Shi Zhou
The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemipeta: Pseudoccoccidae), is an aggressively invasive pest causing huge economic losses of crops around the world. In this study, we developed genome-wide microsatellites for population genetic analysis of P. solenopsis. We obtained a random genome of P. solenopsis with a size of 267.07 Mb and scaffold N50 of 14.12 Kb. In total 115,639 microsatellites were isolated from the genome, of which those with trinucleotide motifs were the most abundant. Forty-two polymorphic loci were selected for primer validation based on three populations. Allele numbers varied from 2 to 5 with an average value of 2.5 per locus, and allelic richness ranged from 1.00 to 4.48. The observed heterozygosity (H0) and expected heterozygosity (HE) ranged from 0.00 to 0.92 and 0.00 to 0.73, respectively. Population genetic structure analysis based on the developed markers revealed strong differentiation between three populations of P. solenopsis collected from its invasive range in China. The microsatellites developed in our study should provide efficient genetic markers for population level studies of P. solenopsis to reveal invasion history and patterns of dispersal.
Ecotoxicology | 2018
Jin-Cui Chen; Ze-Hua Wang; Li-Jun Cao; Yajun Gong; Ary A. Hoffmann; Shu-Jun Wei
Chemical control is important in the management of the tobacco whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Susceptibility of B. tabaci to insecticides may vary among different developmental stages and geographical populations. In this study, we examined toxicity of seven commonly-used insecticides to B. tabaci MED in four field populations from China. Avermectin has high level of toxicity to all stages of B. tabaci MED in all four populations. Cyantraniliprole and sulfoxaflor have high toxicity to adults. Spirotetramat, cyantraniliprole and flonicamid have high toxicity to nymphs but not adults. Acetamiprid, cyantraniliprole and sulfoxaflor have high toxicity to eggs. However, the relative toxicity of B. tabaci MED to these chemicals varied across different populations, with little consistency in population differences across developmental stages. Our findings together with some instances where LC95 values were higher than field recommended dosages indicate field-evolved resistance to insecticides (such as thiamethoxam and sulfoxaflor) and stage-specific mechanisms that will influence effective control of B. tabaci MED by insecticides.
BMC Evolutionary Biology | 2018
Wei Song; Li-Jun Cao; Bing-Yan Li; Yajun Gong; Ary A. Hoffmann; Shu-Jun Wei
BackgroundRefugial populations in Quaternary glaciations are critical to understanding the evolutionary history and climatic interactions of many extant species. Compared with the well-studied areas of Europe and Northern America, refugia of species in eastern Asia remain largely unknown. Here, we investigated the phylogeographic history of a globally important insect pest, the oriental fruit moth Grapholita molesta, in its native range of China.ResultsGenetic structure analyses unveiled three distinct groups and a set of populations with admixture. Approximate Bayesian Computation (ABC) analyses support range expansion of this moth from southwest groups of Yunnan and Sichuan to northern and eastern China. A set of admixed populations was found around these two ancestral groups. This pattern of genetic structure points to two refugia located in the Yunnan region and Sichuan Basin. The split of the two refugia was dated to 329.2 thousand years ago in the penultimate glacial period. One of the lineages was exclusively found around the Sichuan Basin, indicating the formation of endemic populations in this refugium. Ecological niche model analysis suggested a shrinking distribution from the LIG period to the MID period in the Sichuan lineage but a wide and stable distribution in the other lineage.ConclusionsOur results for the first time suggest that Yunnan and Sichuan jointly served as two large-scale refugia in eastern Asia in Quaternary glaciations, helping to maintain genetic diversity overall.