Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Li-Li Hsiao is active.

Publication


Featured researches published by Li-Li Hsiao.


Circulation | 2012

Vascular Klotho Deficiency Potentiates the Development of Human Artery Calcification and Mediates Resistance to Fibroblast Growth Factor 23

Kenneth Lim; Tzong-Shi Lu; Guerman Molostvov; Christina Lee; Lam Ft; Daniel Zehnder; Li-Li Hsiao

Background— Klotho is known to function as a cofactor for the phosphatonin, fibroblast growth factor (FGF)-23 at the kidney. FGF-23 levels rise in chronic kidney disease (CKD) despite progression of accelerated vascular calcification. There are currently conflicting data on whether FGF-23 may exhibit direct vasculoprotective effects in CKD. Methods and Results— In this study, we describe for the first time endogenous Klotho expression in human arteries and human aortic smooth muscle cells. We show that CKD is a state of vascular Klotho deficiency promoted by chronic circulating stress factors, including proinflammatory, uremic, and disordered metabolic conditions. Mechanistic studies demonstrated that Klotho knockdown potentiated the development of accelerated calcification through a Runx2 and myocardin-serum response factor–dependent pathway. Klotho knockdown studies further revealed that vascular cells are a Klotho-dependent target tissue for FGF-23. FGF-23 mediated cellular activation of p-ERK, p-AKT, and cellular proliferative effects, which were abrogated following Klotho knockdown. We next showed that vascular Klotho deficiency driven by procalcific stressors could be restored by vitamin D receptor activators, in vitro and further confirmed using human arterial organ cultures from CKD patients, in vivo. Furthermore, restoration of suppressed Klotho expression by vitamin D receptor activators conferred human aortic smooth muscle cells responsive to FGF-23 signaling and unmasked potential anticalcific effects. Conclusions— Chronic metabolic stress factors found in CKD promote vascular Klotho deficiency. Mechanistic studies revealed a bifunctional role for local vascular Klotho, first, as an endogenous inhibitor of vascular calcification and, second, as a cofactor required for vascular FGF-23 signaling. Furthermore, vitamin D receptor activators can restore Klotho expression and unmask FGF-23 anticalcific effects.


Circulation | 2012

Vascular Klotho Deficiency Potentiates the Development of Human Artery Calcification and Mediates Resistance to FGF-23

Kenneth Lim; Tzong-Shi Lu; Guerman Molostvov; Christina Lee; Lam Ft; Daniel Zehnder; Li-Li Hsiao

Background— Klotho is known to function as a cofactor for the phosphatonin, fibroblast growth factor (FGF)-23 at the kidney. FGF-23 levels rise in chronic kidney disease (CKD) despite progression of accelerated vascular calcification. There are currently conflicting data on whether FGF-23 may exhibit direct vasculoprotective effects in CKD. Methods and Results— In this study, we describe for the first time endogenous Klotho expression in human arteries and human aortic smooth muscle cells. We show that CKD is a state of vascular Klotho deficiency promoted by chronic circulating stress factors, including proinflammatory, uremic, and disordered metabolic conditions. Mechanistic studies demonstrated that Klotho knockdown potentiated the development of accelerated calcification through a Runx2 and myocardin-serum response factor–dependent pathway. Klotho knockdown studies further revealed that vascular cells are a Klotho-dependent target tissue for FGF-23. FGF-23 mediated cellular activation of p-ERK, p-AKT, and cellular proliferative effects, which were abrogated following Klotho knockdown. We next showed that vascular Klotho deficiency driven by procalcific stressors could be restored by vitamin D receptor activators, in vitro and further confirmed using human arterial organ cultures from CKD patients, in vivo. Furthermore, restoration of suppressed Klotho expression by vitamin D receptor activators conferred human aortic smooth muscle cells responsive to FGF-23 signaling and unmasked potential anticalcific effects. Conclusions— Chronic metabolic stress factors found in CKD promote vascular Klotho deficiency. Mechanistic studies revealed a bifunctional role for local vascular Klotho, first, as an endogenous inhibitor of vascular calcification and, second, as a cofactor required for vascular FGF-23 signaling. Furthermore, vitamin D receptor activators can restore Klotho expression and unmask FGF-23 anticalcific effects.


Journal of Clinical Investigation | 2015

KIM-1–mediated phagocytosis reduces acute injury to the kidney

Li V. Yang; Craig Brooks; Sheng Xiao; Venkata Sabbisetti; Melissa Y. Yeung; Li-Li Hsiao; Takaharu Ichimura; Vijay K. Kuchroo; Joseph V. Bonventre

Kidney injury molecule 1 (KIM-1, also known as TIM-1) is markedly upregulated in the proximal tubule after injury and is maladaptive when chronically expressed. Here, we determined that early in the injury process, however, KIM-1 expression is antiinflammatory due to its mediation of phagocytic processes in tubule cells. Using various models of acute kidney injury (AKI) and mice expressing mutant forms of KIM-1, we demonstrated a mucin domain-dependent protective effect of epithelial KIM-1 expression that involves downregulation of innate immunity. Deletion of the mucin domain markedly impaired KIM-1-mediated phagocytic function, resulting in increased proinflammatory cytokine production, decreased antiinflammatory growth factor secretion by proximal epithelial cells, and a subsequent increase in tissue macrophages. Mice expressing KIM-1Δmucin had greater functional impairment, inflammatory responses, and mortality in response to ischemia- and cisplatin-induced AKI. Compared with primary renal proximal tubule cells isolated from KIM-1Δmucin mice, those from WT mice had reduced proinflammatory cytokine secretion and impaired macrophage activation. The antiinflammatory effect of KIM-1 expression was due to the interaction of KIM-1 with p85 and subsequent PI3K-dependent downmodulation of NF-κB. Hence, KIM-1-mediated epithelial cell phagocytosis of apoptotic cells protects the kidney after acute injury by downregulating innate immunity and inflammation.


Nucleic Acids Research | 2002

HugeIndex: a database with visualization tools for high-density oligonucleotide array data from normal human tissues

Peter M. Haverty; Zhiping Weng; Nathan L. Best; Kenneth R. Auerbach; Li-Li Hsiao; Roderick V. Jensen; Steven R. Gullans

High-density oligonucleotide arrays are a powerful tool for uncovering changes in global gene expression in various disease states. To this end, it is essential to first characterize the variations of gene expression in normal physiological processes. We established the Human Gene Expression (HuGE) Index database (www.HugeIndex.org) to serve as a public repository for gene expression data on normal human tissues using high-density oligonucleotide arrays. This resource currently contains the results of 59 gene expression experiments on 19 human tissues. We provide interactive tools for researchers to query and visualize our data over the Internet. To facilitate data analysis, we cross-reference each gene on the array with its annotation in the LocusLink database at NCBI.


PLOS ONE | 2011

Drop-on-Demand Single Cell Isolation and Total RNA Analysis

SangJun Moon; Yun-Gon Kim; Lingsheng Dong; Michael Lombardi; Edward Hæggström; Roderick V. Jensen; Li-Li Hsiao; Utkan Demirci

Technologies that rapidly isolate viable single cells from heterogeneous solutions have significantly contributed to the field of medical genomics. Challenges remain both to enable efficient extraction, isolation and patterning of single cells from heterogeneous solutions as well as to keep them alive during the process due to a limited degree of control over single cell manipulation. Here, we present a microdroplet based method to isolate and pattern single cells from heterogeneous cell suspensions (10% target cell mixture), preserve viability of the extracted cells (97.0±0.8%), and obtain genomic information from isolated cells compared to the non-patterned controls. The cell encapsulation process is both experimentally and theoretically analyzed. Using the isolated cells, we identified 11 stem cell markers among 1000 genes and compare to the controls. This automated platform enabling high-throughput cell manipulation for subsequent genomic analysis employs fewer handling steps compared to existing methods.


Current Biology | 2003

Transcriptional Activation of Placental Growth Factor by the Forkhead/Winged Helix Transcription Factor FoxD1

Hong Zhang; Rachel Palmer; Xiaobo Gao; Jordan A. Kreidberg; William L. Gerald; Li-Li Hsiao; Roderick V. Jensen; Steven R. Gullans; Daniel A. Haber

Stromal-epithelial interactions play an important role in renal organogenesis. Expression of the forkhead/winged helix transcription factor FoxD1 (BF-2) is restricted to stromal cells in the embryonic renal cortex, but it mediates its effects on the adjacent ureteric bud and metanephric mesenchyme, which fail to grow and differentiate in BF-2 null mice. BF-2 is therefore likely to regulate transcription of factors secreted by stromal cells that modulate the differentiation of neighboring epithelial cells. Here, we used cells with inducible expression of BF-2, combined with microarray analysis, to identify Placental Growth Factor (PlGF), a Vascular Endothelial Growth Factor (VEGF) family member previously implicated in angiogenesis, as a downstream target of BF-2. BF-2 binds to a conserved HNF3beta site in the PlGF promoter and activates transcription. PlGF is precisely coexpressed with BF-2, both temporally and spatially, within the developing renal stroma, and it is completely absent in BF-2 null kidney stroma. Addition of PlGF to in vitro kidney organ cultures stimulates branching of the ureteric bud. Our observations indicate that PlGF is a direct and physiologically relevant transcriptional target of BF-2. The contribution of PlGF toward stromal signals that regulate epithelial differentiation suggests novel functions for a growth factor previously implicated in reactive angiogenesis.


American Journal of Respiratory Cell and Molecular Biology | 2010

Rapamycin-Insensitive Up-Regulation of MMP2 and Other Genes in Tuberous Sclerosis Complex 2–Deficient Lymphangioleiomyomatosis-Like Cells

Po-Shun Lee; Szeman W. Tsang; Marsha A. Moses; Zachary Trayes-Gibson; Li-Li Hsiao; Roderick Jensen; Rachel M. Squillace; David J. Kwiatkowski

Increased matrix metalloproteinase (MMP) activity has been implicated in the pathogenesis of lymphangioleiomyomatosis (LAM). The objective of this study was to investigate how tuberous sclerosis complex (TSC) 1 or TSC2 deficiency alters MMP expression and regulation. We studied immortalized cells that lack TSC2 derived from an angiomyolipoma of a patient with LAM, a TSC2 addback derivative, and murine embryonic fibroblast cells that lack Tsc1 or -2 and respective controls. Global gene expression analysis was performed in the angiomyolipoma and derivative cell lines. MMP levels in the conditioned media from these cells were analyzed by zymography and ELISA. We found increased MMP-2 expression in cells lacking TSC1/TSC2 compared with their respective controls by zymography. MMP-2 overproduction by these cells was not affected by rapamycin treatment. Gene expression analysis confirmed increased MMP-2 gene expression that was not affected by rapamycin. Furthermore, multiple other genes were found to be overexpressed in rapamycin-treated TSC2-deficient cells compared with TSC2(+) cells. We conclude that TSC1/TSC2 deficiency leads to MMP-2 overproduction that is rapamycin-insensitive, and that several genes exhibit similar patterns, suggesting that TSC1/TSC2-dependent, but mammalian target of rapamycin-independent, pathways may be involved in the pathogenesis of LAM.


The Journal of Clinical Endocrinology and Metabolism | 2015

α-Klotho Expression in Human Tissues

Kenneth Lim; Arnoud J. Groen; Guerman Molostvov; Tzong-Shi Lu; Kathryn S. Lilley; David Snead; Sean James; Ian B. Wilkinson; Stephen Ting; Li-Li Hsiao; Thomas F. Hiemstra; Daniel Zehnder

Context: α-Klotho has emerged as a powerful regulator of the aging process. To date, the expression profile of α-Klotho in human tissues is unknown, and its existence in some human tissue types is subject to much controversy. Objective: This is the first study to characterize systemwide tissue expression of transmembrane α-Klotho in humans. We have employed next-generation targeted proteomic analysis using parallel reaction monitoring in parallel with conventional antibody-based methods to determine the expression and spatial distribution of human α-Klotho expression in health. Results: The distribution of α-Klotho in human tissues from various organ systems, including arterial, epithelial, endocrine, reproductive, and neuronal tissues, was first identified by immunohistochemistry. Kidney tissues showed strong α-Klotho expression, whereas liver did not reveal a detectable signal. These results were next confirmed by Western blotting of both whole tissues and primary cells. To validate our antibody-based results, α-Klotho-expressing tissues were subjected to parallel reaction monitoring mass spectrometry (data deposited at ProteomeXchange, PXD002775) identifying peptides specific for the full-length, transmembrane α-Klotho isoform. Conclusions: The data presented confirm α-Klotho expression in the kidney tubule and in the artery and provide evidence of α-Klotho expression across organ systems and cell types that has not previously been described in humans.


North American Journal of Medical Sciences | 2010

Interpretation of biological and mechanical variations between the Lowry versus Bradford method for protein quantification.

Tzong-Shi Lu; Szu-Yu Yiao; Kenneth Lim; Roderick V. Jensen; Li-Li Hsiao

Background: The identification of differences in protein expression resulting from methodical variations is an essential component to the interpretation of true, biologically significant results. Aims: We used the Lowry and Bradford methods- two most commonly used methods for protein quantification, to assess whether differential protein expressions are a result of true biological or methodical variations. Material & Methods: Differential protein expression patterns was assessed by western blot following protein quantification by the Lowry and Bradford methods. Results: We have observed significant variations in protein concentrations following assessment with the Lowry versus Bradford methods, using identical samples. Greater variations in protein concentration readings were observed over time and in samples with higher concentrations, with the Bradford method. Identical samples quantified using both methods yielded significantly different expression patterns on Western blot. Conclusions: We show for the first time that methodical variations observed in these protein assay techniques, can potentially translate into differential protein expression patterns, that can be falsely taken to be biologically significant. Our study therefore highlights the pivotal need to carefully consider methodical approaches to protein quantification in techniques that report quantitative differences.


Cellular Signalling | 2009

Identification of PP2A as a novel interactor and regulator of TRIP-Br1

Zhi Jiang Zang; Lakshman Gunaratnam; Jit Kong Cheong; Li Yun Lai; Li-Li Hsiao; Eileen O'Leary; Xiaoming Sun; Manuel Salto-Tellez; Joseph V. Bonventre; Stephen I-Hong Hsu

TRIP-Br proteins are a novel family of transcriptional coregulators involved in E2F-mediated cell cycle progression. Three of the four mammalian members of TRIP-Br family, including TRIP-Br1, are known oncogenes. We now report the identification of the Balpha regulatory subunit of serine/threonine protein phosphatase 2A (PP2A) as a novel TRIP-Br1 interactor, based on an affinity binding assay coupled with mass spectrometry. A GST-TRIP-Br1 fusion protein associates with catalytically active PP2A-ABalphaC holoenzyme in vitro. Coimmunoprecipitation confirms this association in vivo. Immunofluorescence staining with a monoclonal antibody against TRIP-Br1 reveals that endogenous TRIP-Br1 and PP2A-Balpha colocalize mainly in the cytoplasm. Consistently, immunoprecipitation followed by immunodetection with anti-phosphoserine antibody suggest that TRIP-Br1 exists in a serine-phosphorylated form. Inhibition of PP2A activity by okadaic acid or transcriptional silencing of the PP2A catalytic subunit by small interfering RNA results in downregulation of total TRIP-Br1 protein levels but upregulation of serine-phosphorylated TRIP-Br1. Overexpression of PP2A catalytic subunit increases TRIP-Br1 protein levels and TRIP-Br1 co-activated E2F1/DP1 transcription. Our data support a model in which association between PP2A-ABalphaC holoenzyme and TRIP-Br1 in vivo in mammalian cells represents a novel mechanism for regulating the level of TRIP-Br1 protooncoprotein.

Collaboration


Dive into the Li-Li Hsiao's collaboration.

Top Co-Authors

Avatar

Tzong-Shi Lu

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Kenneth Lim

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Roderick V. Jensen

University of Massachusetts Boston

View shared research outputs
Top Co-Authors

Avatar

Steven R. Gullans

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takumi Yoshida

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph V. Bonventre

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge