Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Li-Min Lu is active.

Publication


Featured researches published by Li-Min Lu.


Biosensors and Bioelectronics | 2009

A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy.

Li-Min Lu; Li Zhang; Fengli Qu; Haixia Lu; Xiao-Bing Zhang; Zai-Sheng Wu; Shuangyan Huan; Qiu-An Wang; Guo-Li Shen; Ru-Qin Yu

Highly ordered Ni nanowire arrays (NiNWAs) were synthesized for the first time using a template-directed electropolymerization strategy with a nanopore polycarbonate (PC) membrane template, and their morphological characterization were examined by scanning electron microscopy (SEM) and transmission electron microscope (TEM). A NiNWAs based electrode shows very high electrochemical activity for electrocatalytic oxidation of glucose in alkaline medium, which has been utilized as the basis of the fabrication of a nonenzymatic biosensor for electrochemical detection of glucose. The biosensor can be applied to the quantification of glucose with a linear range covering from 5.0x10(-7) to 7.0x10(-3) M, a high sensitivity of 1043 microA mM(-1) cm(-2), and a low detection limit of 1x10(-7) M. The experiment results also showed that the sensor exhibits good reproducibility and long-term stability, as well as high selectivity with no interference from other oxidable species.


Biosensors and Bioelectronics | 2011

In situ synthesis of palladium nanoparticle-graphene nanohybrids and their application in nonenzymatic glucose biosensors

Li-Min Lu; Hongbo Li; Fengli Qu; Xiao-Bing Zhang; Guo-Li Shen; Ru-Qin Yu

A nonenzymatic electrochemical biosensor was developed for the detection of glucose based on an electrode modified with palladium nanoparticles (PdNPs)-functioned graphene (nafion-graphene). The palladium nanoparticle-graphene nanohybrids were synthesized using an in situ reduction process. Nafion-graphene was first assembled onto an electrode to chemically adsorb Pd(2+). And Pd(2+) was subsequently reduced by hydrazine hydrate to form PdNPs in situ. Such a PdNPs-graphene nanohybrids-based electrode shows a very high electrochemical activity for electrocatalytic oxidation of glucose in alkaline medium. The proposed biosensor can be applied to the quantification of glucose with a wide linear range covering from 10 μM to 5mM (R=0.998) with a low detection limit of 1 μM. The experiment results also showed that the sensor exhibits good reproducibility and long-term stability, as well as high selectivity with no interference from other potential competing species.


Journal of the American Chemical Society | 2011

A Ligation-Triggered DNAzyme Cascade for Amplified Fluorescence Detection of Biological Small Molecules with Zero-Background Signal

Li-Min Lu; Xiao-Bing Zhang; Rong-Mei Kong; Bin Yang; Weihong Tan

Many types of fluorescent sensing systems have been reported for biological small molecules. Particularly, several methods have been developed for the recognition of ATP or NAD(+), but they only show moderate sensitivity, and they cannot discriminate either ATP or NAD(+) from their respective analogues. We have addressed these limitations and report here a dual strategy which combines split DNAzyme-based background reduction with catalytic and molecular beacon (CAMB)-based amplified detection to develop a ligation-triggered DNAzyme cascade, resulting in ultrahigh sensitivity. First, the 8-17 DNAzyme is split into two separate oligonucleotide fragments as the building blocks for the DNA ligation reaction, thereby providing a zero-background signal to improve overall sensitivity. Next, a CAMB strategy is further employed for amplified signal detection achieved through cycling and regenerating the DNAzyme to realize the true enzymatic multiple turnover (one enzyme catalyzes the cleavage of several substrates) of catalytic beacons. This combination of zero-background signal and signal amplification significantly improves the sensitivity of the sensing systems, resulting in detection limits of 100 and 50 pM for ATP and NAD(+), respectively, much lower than those of previously reported biosensors. Moreover, by taking advantage of the highly specific biomolecule-dependence of the DNA ligation reaction, the developed DNAzyme cascades show significantly high selectivity toward the target cofactor (ATP or NAD(+)), and the target biological small molecule can be distinguished from its analogues. Therefore, as a new and universal platform for the design of DNA ligation reaction-based sensing systems, this novel ligation-triggered DNAzyme cascade method may find a broad spectrum of applications in both environmental and biomedical fields.


Analytical Chemistry | 2009

Naphthalimide−Porphyrin Hybrid Based Ratiometric Bioimaging Probe for Hg2+: Well-Resolved Emission Spectra and Unique Specificity

Chun-Yan Li; Xiao-Bing Zhang; Li Qiao; Yan Zhao; Chun-Mei He; Shuangyan Huan; Li-Min Lu; Li-Xin Jian; Guo-Li Shen; Ru-Qin Yu

In this paper, we unveil a novel naphthalimide-porphyrin hybrid based fluorescence probe (1) for ratiometric detection of Hg(2+) in aqueous solution and living cells. The ratiometric signal change of the probe is based on a carefully predesigned molecule containing two independent Hg(2+)-sensitive fluorophores with their maximal excitation wavelengths located at the same range, which shows reversibly specific ratiometric fluorescence responses induced by Hg(2+). In the new developed sensing system, the emissions of the two fluorophores are well-resolved with a 125 nm difference between two emission maxima, which can avoid the emission spectra overlap problem generally met by spectra-shift type probes and is especially favorable for ratiometric imaging intracellular Hg(2+). It also benefits from a large range of emission ratios and thereby a high sensitivity for Hg(2+) detection. Under optimized experimental conditions, the probe exhibits a stable response for Hg(2+) over a concentration range from 1.0 x 10(-7) to 5.0 x 10(-5) M, with a detection limit of 2.0 x 10(-8) M. The response of the probe toward Hg(2+) is reversible and fast (response time less than 2 min). Most importantly, the ratiometric fluorescence changes of the probe are remarkably specific for Hg(2+) in the presence of other abundant cellular metal ions (i.e., Na(+), K(+), Mg(2+), and Ca(2+)), essential transition metal ions in cells (such as Zn(2+), Fe(3+), Fe(2+), Cu(2+), Mn(2+), Co(2+), and Ni(2+)), and environmentally relevant heavy metal ions (Ag(+), Pb(2+), Cr(3+), and Cd(2+)), which meets the selective requirements for biomedical and environmental monitoring application. The recovery test of Hg(2+) in real water samples demonstrates the feasibility of the designed sensing system for Hg(2+) assay in practical samples. It has also been used for ratiometric imaging of Hg(2+) in living cells with satisfying resolution, which indicates that our novel designed probe has effectively avoided the general emission spectra overlap problem of other ratiometric probes.


Analytica Chimica Acta | 2012

Seed-mediated synthesis of copper nanoparticles on carbon nanotubes and their application in nonenzymatic glucose biosensors

Li-Min Lu; Xiao-Bing Zhang; Guo-Li Shen; Ru-Qin Yu

In this paper, for the first time, Cu nanoparticles (CuNPs) were prepared by seed-mediated growth method with Au nanoparticles (AuNPs) playing the role of seeds. Carbon nanotubes (CNTs) and AuNPs were first dropped on the surface of glassy carbon (GC) electrode, and then the electrode was immersed into growth solution that contained CuSO(4) and hydrazine. CuNPs were successfully grown on the surface of the CNTs. The modified electrode showed a very high electrochemical activity for electrocatalytic oxidation of glucose in alkaline medium, which was utilized as the basis of the fabrication of a nonenzymatic biosensor for electrochemical detection of glucose. The biosensor can be applied to the quantification of glucose with a linear range covering from 1.0×10(-7) to 5×10(-3)M and a low detection limit of 3×10(-8)M. Furthermore, the experiment results also showed that the biosensor exhibited good reproducibility and long-term stability, as well as high selectivity with no interference from other oxidable species.


Biosensors and Bioelectronics | 2013

Supramolecular assembly of enzyme on functionalized graphene for electrochemical biosensing.

Li-Min Lu; Xin-Lan Qiu; Xiao-Bing Zhang; Guo-Li Shen; Weihong Tan; Ru-Qin Yu

The self-assembly of cyclodextrin (CD) functionalized graphene (GR) and adamantane-modified horseradish peroxidase (HRP-ADA) by host-guest supramolecular interaction into novel nanostructures in aqueous solution is reported in the present study. Electrochemical impedance spectroscopy and cyclic voltammetry were applied to characterize the self-assembly process and study the electrochemical behaviors of the immobilized proteins. UV-vis spectra indicated that the native structure of HRP was maintained after the assembly, implying good biocompatibility of CD-functionalized GR (CD-GR). Furthermore, the HRP-ADA/CD-GR composites were utilized for the fabrication of enzyme electrodes (HRP-ADA/CD-GR electrodes). The proposed biosensor showed good reproducibility and high sensitivity to H2O2 with the detection limit of 0.1 μM. In the range of 0.7-35 μM, the catalytic reduction current of H2O2 was proportional to H2O2 concentration.


Analytica Chimica Acta | 2009

A novel cobalt hexacyanoferrate nanocomposite on CNT scaffold by seed medium and application for biosensor.

Suiping Wang; Li-Min Lu; Minghui Yang; Yong Lei; Guo-Li Shen; Ru-Qin Yu

In this paper, for the first time, we introduced the seed-mediated method to the growth of cobalt hexacyanoferrate nanoparticles (CoNPs), using 3.5 nm gold nanoparticles as seeds and multiwalled carbon nanotubes (MWCNTs) as growth scaffold which would both show synergistic action toward the reduction of H2O2. Via gold seeds, the one-step fabrication of CoNPs on the glassy carbon electrode is simple without any linking reagents, which will ingeniously exert the electrochemical properties of cobalt hexacyanoferrate. Combined with glucose oxidase, the sensing surface is applied as a biosensor for glucose. The growth of CoNPs is a chemical deposition process around the small Au nanoseed particles. The nanoseeds bridge the CoNPs and CNTs to form a smart nanocomposite. Spherical CoNPs have a relatively moderate dispersion on the three-dimensional network of CNTs with relatively even diameter ca. 100 nm. Whereas, in the control experiments without gold seeds cobalt hexacyanoferrate can only form continuous films, of which the size is far from nanolevel and the catalytic ability is poor. The synthesis and fabrication/modification of CoNPs are simple and fast without prior preparation of CoNPs and lengthy process of cross-linking. The amount of the seeds and CNTs, growth time and concentration of growth solution were investigated. Scanning electron microscopy (SEM) and electrochemical method were used.


Analytical Chemistry | 2015

Multiple functional nanoprobe for contrast-enhanced bimodal cellular imaging and targeted therapy.

Hong-Min Meng; Li-Min Lu; Xu-Hua Zhao; Zhuo Chen; Zilong Zhao; Chan Yang; Xiao-Bing Zhang; Weihong Tan

Many one-photon fluorescence-based theranostic nanosystems have been developed for simultaneous therapeutic intervention/monitoring for various types of cancers. However, for early diagnosis of cancer, two-photon fluorescence microscopy (TPFM) can realize deep-tissue imaging with higher spatial resolution. In this study, we first report a multiple functional nanoprobe for contrast-enhanced bimodal cellular imaging and targeted therapy. Components of the nanoprobe include (1) two-photon dye-doped mesoporous silica nanoparticles (TPD-MSNs); (2) MnO2 nanosheets that act as a (i) gatekeeper for TPD-MSNs, (ii) quencher for TP fluorescence, and (iii) contrast agent for MRI; (3) cancer cell-targeting aptamers. Guided by aptamers, TPD-MSNs are rapidly internalized into the target cells. Next, intracellular glutathione reduces MnO2 to Mn(2+) ions, resulting in contrast-enhanced TP fluorescence and magnetic resonance signal for cellular imaging. Meanwhile, preloaded doxorubicin and Chlorin e6 are released for chemotherapy and photodynamic therapy, respectively, with a synergistic effect and significantly enhanced therapeutic efficacy.


Analytica Chimica Acta | 2013

An electronic channel switching-based aptasensor for ultrasensitive protein detection.

Hongbo Li; Cui Wang; Zai-Sheng Wu; Li-Min Lu; Liping Qiu; Hui Zhou; Guo-Li Shen; Ru-Qin Yu

Due to the ubiquity and essential of the proteins in all living organisms, the identification and quantification of disease-specific proteins are particularly important. Because the conformational change of aptamer upon its target or probe/target/probe sandwich often is the primary prerequisite for the design of an electrochemical aptameric assay system, it is extremely difficult to construct the electrochemical aptasensor for protein assay because the corresponding aptamers cannot often meet the requirement. To circumvent the obstacles mentioned, an electronic channel switching-based (ECS) aptasensor for ultrasensitive protein detection is developed. The essential achievement made is that an innovative sensing concept is proposed: the hairpin structure of aptamer is designed to pull electroactive species toward electrode surface and makes the surface-immobilized IgE serve as a barrier that separates enzyme from its substrate. It seemingly ensures that the ECS aptasensor exhibits most excellent assay features, such as, a detection limit of 4.44×10(-6)μg mL(-1) (22.7fM, 220zmol in 10-μL sample) (demonstrating a 5 orders of magnitude improvement in detection sensitivity compared with classical electronic aptasensors) and dynamic response range from 4.44×10(-6) to 4.44×10(-1)μg mL(-1). We believe that the described sensing concept here might open a new avenue for the detection of proteins and other biomacromolecules.


Electroanalysis | 2010

A MgO Nanoparticles Composite Matrix-Based Electrochemical Biosensor for Hydrogen Peroxide with High Sensitivity

Li-Min Lu; Li Zhang; Xiaobing Zhang; Zai-Sheng Wu; Shuangyan Huan; Guo-Li Shen; Ru-Qin Yu

Collaboration


Dive into the Li-Min Lu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge