Li Qiang Chen
Southwest University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Li Qiang Chen.
Analytical Chemistry | 2010
Shu Jun Zhen; Li Qiang Chen; Sai Jin Xiao; Yuan Fang Li; Ping Ping Hu; Lei Zhan; Li Peng; Er Qun Song; Cheng Zhi Huang
Although holding the advantages of both an aptamer and a molecular beacon (MB), a molecular aptamer beacon (MAB) needs complicated and expensive modifications at both of its ends and usually has a high background signal because of the low energy transfer efficiency between the donor and the acceptor. To overcome these shortcomings, in this study, we develop a long-range resonance energy transfer (LrRET) system by separating the donor from the acceptor, wherein only one end of the MAB is fluorescently labeled and acts as the energy donor and multiwalled carbon nanotubes (MWCNTs) are introduced as the energy acceptor. To test the feasibility of the newly designed MAB system, adenosine triphosphate (ATP) has been employed as a proof-of-concept target. It is found that the fluorescence of the designed MAB is completely quenched by MWCNTs, supplying a very low background signal. Then the quenched fluorescence is recovered significantly with the addition of ATP, so that ATP can be detected in the range of 0.8-80 μM with a limit of detection of 0.5 μM (3σ). Compared with the conventional fluorescence resonance energy transfer, the efficiency of LrRET between the dye and MWCNTs is much higher. Since only one end of the MAB needs the modification, the present strategy is simple and cost-effective. Furthermore, the use of MWCNTs can greatly reduce the fluorescence background of the MAB and supply a high sensitivity, showing its generality for detection of a variety of targets.
Journal of Physical Chemistry B | 2010
Li Qiang Chen; Sai Jin Xiao; Li Peng; Tong Wu; Jian Ling; Yuan Fang Li; Cheng Zhi Huang
Aptamer-adapted silver nanoparticles (Apt-AgNPs) were developed as a novel optical probe for simultaneous intracellular protein imaging and single nanoparticle spectral analysis, wherein AgNPs act as an illuminophore and the aptamer as a biomolecule specific recognition unit, respectively. It was found that streptavidin-conjugated and aptamer-functionalized AgNPs show satisfactory biocompatibility and stability in cell culture medium, and thus not only can act as a high contrast imaging agent for both dark-field light scattering microscope and TEM imaging but also can inspire supersensitive single nanoparticle spectra for potential intercellular microenvironment analysis. Further investigations showed that caveolae-related endocytosis is likely a necessary pathway for Apt-AgNPs labeled PrP(c) internalization in human bone marrow neuroblastoma cells (SK-N-SH cells). The integrated capability of Apt-AgNPs to be used as light scattering and TEM imaging agents, along with their potential use for single nanoparticle spectral analysis, makes them a great promise for future biomedical imaging and disease diagnosis.
Analytica Chimica Acta | 2010
You Sang; Li Zhang; Yuan Fang Li; Li Qiang Chen; Jia Li Xu; Cheng Zhi Huang
Nowadays, hydrogen peroxide (H(2)O(2)) has attracted more and more attentions in biochemical fields owing to its important role in biological systems. In this contribution, we propose a novel assay for the detection of H(2)O(2) based on the cleavage of ssDNA on gold nanoparticles (AuNPs). It was known that AuNPs could be stable in the presence of single-stranded DNA (ssDNA) which prevents the salt-induced aggregation of AuNPs in solution owing to the electrostatic repulsion. However, hydroxyl radical (HO*) generated from Fenton reaction could cleave the ssDNA and induce the aggregation of AuNPs. Therefore, color change from red to blue owing to the plasmon resonance absorption (PRA) of AuNPs can be observed by the naked eyes and enhancement of plasmon resonance light scattering could be measured with a common spectrofluorometer. The values of A(650)/A(520) of the PRA band were found to be linearly proportional to the concentration of H(2)O(2) in the range of 2.0 x 10(-7) to 8.0 x 10(-6) mol L(-1) with the limit of determination (LOD) being 40 nmol L(-1) (S/N=3), and thus the content of H(2)O(2) in rat encephalon extraction could be successfully detected with the recovery in the range of 98-103%.
Analytical Chemistry | 2010
Sai Jin Xiao; Ping Ping Hu; Xiao Dong Wu; Yan Li Zou; Li Qiang Chen; Li Peng; Jian Ling; Shu Jun Zhen; Lei Zhan; Yuan Fang Li; Cheng Zhi Huang
The major challenge of prion disease diagnosis at the presymptomatic stage is how to sensitively or selectively discriminate and detect the minute quantity of disease-associated prion protein isoform (PrP(Res)) in complex biological systems such as serum and brain homogenate. In this contribution, we developed a dual-aptamer strategy by taking the advantages of aptamers, the excellent separation ability of magnetic microparticles (MMPs), and the high fluorescence emission features of quantum dots (QDs). Two aptamers (Apt1 and Apt2), which can recognize their two corresponding distinct epitopes of prion proteins (PrP), were coupled to the surfaces of MMPs and QDs, respectively, to make MMPs-Apt1 and QDs-Apt2 ready at first, which then could be coassociated together through the specific recognitions of the two aptamers with their two corresponding distinct epitopes of PrP, forming a sandwich structure of MMPs-Apt1-PrP-Apt2-QDs and displaying the strong fluorescence of QDs. Owing to the different binding affinities of the two aptamers with PrP(Res) and cellular prion protein (PrP(C)), both of which have distinct denaturing detergent resistance, our dual-aptamer strategy could be applied to discriminate PrP(Res) and PrP(C) successfully in serum. Further identifications showed that the present dual-aptamer assay could be successfully applied to the detection of PrP in 0.01% brain homogenate, about 1000-fold lower than that of commonly applied antibody-mediated assays, which can detect PrP just in 10% brain homogenate, indicating that the present designed dual-aptamer assay is highly sensitive and adequate for clinical diagnosis without isolation of target protein prior to assay.
Chemical Research in Toxicology | 2015
Li Qiang Chen; Li Fang; Jian Ling; Cheng Zhi Ding; Bin Kang; Cheng Zhi Huang
Silver nanoparticles (AgNPs) are increasingly being used as antimicrobial agents and drug carriers in biomedical fields. However, toxicological information on their effects on red blood cells (RBCs) and the mechanisms involved remain sparse. In this article, we examined the size dependent nanotoxicity of AgNPs using three different characteristic sizes of 15 nm (AgNPs15), 50 nm (AgNPs50), and 100 nm (AgNPs100) against fish RBCs. Optical microscopy and transmission electron microscopy observations showed that AgNPs exhibited a size effect on their adsorption and uptake by RBCs. The middle sized AgNPs50, compared with the smaller or bigger ones, showed the highest level of adsorption and uptake by the RBCs, suggesting an optimal size of ∼50 nm for passive uptake by RBCs. The toxic effects determined based on the hemolysis, membrane injury, lipid peroxidation, and antioxidant enzyme production were fairly size and dose dependent. In particular, the smallest sized AgNPs15 displayed a greater ability to induce hemolysis and membrane damage than AgNPs50 and AgNPs100. Such cytotoxicity induced by AgNPs should be attributed to the direct interaction of the nanoparticle with the RBCs, resulting in the production of oxidative stress, membrane injury, and subsequently hemolysis. Overall, the results suggest that particle size is a critical factor influencing the interaction between AgNPs and the RBCs.
Analytical Chemistry | 2012
Li Qiang Chen; Sai Jin Xiao; Ping Ping Hu; Li Peng; Jun Ma; Ling Fei Luo; Yuan Fang Li; Cheng Zhi Huang
Although nanoparticles have been widely used as optical contrasts for cell imaging, the complicated prefunctionalized steps and low labeling efficiency of nanoprobes greatly inhibit their applications in cellular protein imaging. In this study, we developed a novel and general strategy that employs an aptamer not only as a recognizer for protein recognition but also as a linker for nanoreporter targeting to specifically label membrane proteins of interest and track their endocytic pathway. With this strategy, three kinds of nanoparticles, including gold nanoparticles, silver nanoparticles, and quantum dots (QDs), have been successfully targeted to the membrane proteins of interest, such as nucleolin or prion protein (PrP(C)). The following investigations on the subcellular distribution with fluorescent immunocolocalization assay indicated that PrP(C)-aptamer-QD complexes most likely internalized into cytoplasm through a classical clathrin-dependent/receptor-mediated pathway. Further single-particle tracking and trajectory analysis demonstrated that PrP(C)-aptamer-QD complexes exhibited a complex dynamic process, which involved three types of movements, including membrane diffusion, vesicle transportation, and confined diffusion, and all types of these movements were associated with distinct phases of PrP(C) endocytosis. Compared with traditional multilayer methods, our proposed aptamer-mediated strategy is simple in procedure, avoiding any complicated probe premodification and purification. In particular, the new double-color labeling strategy is unique and significant due to its superior advantages of targeting two signal reporters simultaneously in a single protein using only one aptamer. What is more important, we have constructed a general and versatile aptamer-mediated protein labeling nanoplatform that has shown great promise for future biomedical labeling and intracellular protein dynamic analysis.
Chemical Communications | 2010
Ping Ping Hu; Li Qiang Chen; Chun Liu; Shu Jun Zhen; Sai Jin Xiao; Li Peng; Yuan Fang Li; Cheng Zhi Huang
An ultra-sensitive detection strategy for prion protein is proposed based on the long range resonance energy transfer (LrRET) from quantum dots (QDs) to the surface of gold nanoparticles (AuNPs), in which process energy donor-acceptor separation distance ranges from 9 to 22 nm.
Nanotechnology | 2010
Yi Wang; Li Qiang Chen; Yuan Fang Li; Xi Juan Zhao; Li Peng; Cheng Zhi Huang
A simple, one-pot and controllable strategy is reported in this contribution for biomimetic synthesis and self-assembly of gold nanoparticles (Au-NPs). It involves our synthesized polyaldehyde dextran (PAD), which has been proved to be a biomacromolecule with excellent biocompatibility and biodegradability, acting as both a reducing agent and a stabilizer. The morphology of the as-prepared Au-NP assemblies can be controlled by adjusting the reaction conditions, such as the concentration of aldehyde in PAD, the reaction time and the temperature. Investigations of the mechanism suggest that stabilizers may distribute on different crystal facets of NPs non-uniformly owing to the different binding forces, and dipole-dipole interaction of NPs could be the main driving force for the assembly of Au-NPs. In addition, intermolecular hydrogen bonding interaction of stabilizers could also act as a possible driving force. The excellent biocompatibility of the Au-NP assemblies makes them promising candidates for fabricating future optical nanodevices and application in biological systems.
PLOS ONE | 2013
Sai Jin Xiao; Ping Ping Hu; Li Qiang Chen; Shu Jun Zhen; Li Peng; Yuan Fang Li; Cheng Zhi Huang
Molecular logic gates, which have attracted increasing research interest and are crucial for the development of molecular-scale computers, simplify the results of measurements and detections, leaving the diagnosis of disease either “yes” or “no”. Prion diseases are a group of fatal neurodegenerative disorders that happen in human and animals. The main problem with a diagnosis of prion diseases is how to sensitively and selectively discriminate and detection of the minute amount of PrPRes in biological samples. Our previous work had demonstrated that dual-aptamer strategy could achieve highly sensitive and selective discrimination and detection of prion protein (cellular prion protein, PrPC, and the diseases associated isoform, PrPRes) in serum and brain. Inspired by the advantages of molecular logic gate, we further conceived a new concept for dual-aptamer logic gate that responds to two chemical input signals (PrPC or PrPRes and Gdn-HCl) and generates a change in fluorescence intensity as the output signal. It was found that PrPRes performs the “OR” logic operation while PrPC performs “XOR” logic operation when they get through the gate consisted of aptamer modified reusable magnetic microparticles (MMPs-Apt1) and quantum dots (QDs-Apt2). The dual-aptamer logic gate simplifies the discrimination results of PrPRes, leaving the detection of PrPRes either “yes” or “no”. The development of OR logic gate based on dual-aptamer strategy and two chemical input signals (PrPRes and Gdn-HCl) is an important step toward the design of prion diseases diagnosis and therapy systems.
Spectroscopy Letters | 2017
Jun Peng; Jian Ling; Yan-Yan Tan; Chun-Ju Jing; Xing-Juan Li; Li Qiang Chen; Qiue Cao
ABSTRACT A highly selective and rapid analytical method was proposed to detect cysteine in aqueous solution by using poly(thymine)-templated copper nanoparticles. In a neutral aqueous condition, the fluorescence of poly(thymine)-templated copper nanoparticles could be quenched by cysteine in 10 min effectively coexisting with common biological small molecules. Under the optimal experimental condition, the present assay allowed for the selective determination of cysteine in the range of 12.5–100 µM, with a detection limit of 7.3 µM. The results indicated that the poly(thymine)-templated copper nanoparticles probe would find potential application in bioanalysis.