Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Li-Xiao Xu is active.

Publication


Featured researches published by Li-Xiao Xu.


Journal of Translational Medicine | 2014

Metallothionein III (MT3) is a putative tumor suppressor gene that is frequently inactivated in pediatric acute myeloid leukemia by promoter hypermethylation

Yan-Fang Tao; Li-Xiao Xu; Jun Lu; Lan Cao; Zhi-Heng Li; Shaoyan Hu; Na-Na Wang; Xiao-Juan Du; Lichao Sun; Wen-Li Zhao; Pei-Fang Xiao; Fang Fang; Yanhong Li; Gang Li; He Zhao; Yi-Ping Li; Yun-Yun Xu; Jian Ni; Jian Wang; Xing Feng; Jian Pan

BackgroundAcute myeloid leukemia (AML) is the second most common form of leukemia in children. Aberrant DNA methylation patterns are a characteristic feature in various tumors, including AML. Metallothionein III (MT3) is a tumor suppresser reported to show promoter hypermethylated in various cancers. However, the expression and molecular function of MT3 in pediatric AML is unclear.MethodsEleven human leukemia cell lines and 41 pediatric AML samples and 20 NBM/ITP (Norma bone marrow/Idiopathic thrombocytopenic purpura) control samples were analyzed. Transcription levels of MT3 were evaluated by semi-quantitative and real-time PCR. MT3 methylation status was determined by methylation specific PCR (MSP) and bisulfite genomic sequencing (BSG). The molecular mechanism of MT3 was investigated by apoptosis assays and PCR array analysis.ResultsThe MT3 promoter was hypermethylated in leukemia cell lines. More CpG’s methylated of MT3 was observed 39.0% pediatric AML samples compared to 10.0% NBM controls. Transcription of MT3 was also significantly decreased in AML samples compared to NBM/ITP controls (P < 0.001); patients with methylated MT3 exhibited lower levels of MT3 expression compared to those with unmethylated MT3 (P = 0.049). After transfection with MT3 lentivirus, proliferation was significantly inhibited in AML cells in a dose-dependent manner (P < 0.05). Annexin V assay showed that apoptosis was significantly upregulated MT3-overexpressing AML cells compared to controls. Real-time PCR array analysis revealed 34 dysregulated genes that may be implicated in MT3 overexpression and apoptosis in AML, including FOXO1.ConclusionMT3 may be a putative tumor suppressor gene in pediatric AML. Epigenetic inactivation of MT3 via promoter hypermethylation was observed in both AML cell lines and pediatric AML samples. Overexpression of MT3 may inhibit proliferation and induce apoptosis in AML cells. FOXO1 was dysregulated in MT3-overexpressing cells, offering an insight into the mechanism of MT3-induced apoptosis. However, further research is required to determine the underlying molecular details.


International Journal of Molecular Sciences | 2015

Molecular Targeting of the Oncoprotein PLK1 in Pediatric Acute Myeloid Leukemia: RO3280, a Novel PLK1 Inhibitor, Induces Apoptosis in Leukemia Cells

Na-Na Wang; Zhi-Heng Li; He Zhao; Yan-Fang Tao; Li-Xiao Xu; Jun Lu; Lan Cao; Xiao-Juan Du; Lichao Sun; Wen-Li Zhao; Pei-Fang Xiao; Fang Fang; Guang-Hao Su; Yanhong Li; Gang Li; Yi-Ping Li; Yun-Yun Xu; Huiting Zhou; Yi Wu; Mei-Fang Jin; Lin Liu; Jian Ni; Jian Wang; Shaoyan Hu; Xueming Zhu; Xing Feng; Jian Pan

Polo-like kinase 1 (PLK1) is highly expressed in many cancers and therefore a biomarker of transformation and potential target for the development of cancer-specific small molecule drugs. RO3280 was recently identified as a novel PLK1 inhibitor; however its therapeutic effects in leukemia treatment are still unknown. We found that the PLK1 protein was highly expressed in leukemia cell lines as well as 73.3% (11/15) of pediatric acute myeloid leukemia (AML) samples. PLK1 mRNA expression was significantly higher in AML samples compared with control samples (82.95 ± 110.28 vs. 6.36 ± 6.35; p < 0.001). Kaplan-Meier survival analysis revealed that shorter survival time correlated with high tumor PLK1 expression (p = 0.002). The 50% inhibitory concentration (IC50) of RO3280 for acute leukemia cells was between 74 and 797 nM. The IC50 of RO3280 in primary acute lymphocytic leukemia (ALL) and AML cells was between 35.49 and 110.76 nM and 52.80 and 147.50 nM, respectively. RO3280 induced apoptosis and cell cycle disorder in leukemia cells. RO3280 treatment regulated several apoptosis-associated genes. The regulation of DCC, CDKN1A, BTK, and SOCS2 was verified by western blot. These results provide insights into the potential use of RO3280 for AML therapy; however, the underlying mechanisms remain to be determined.


Journal of Experimental & Clinical Cancer Research | 2015

Early B-cell factor 3 (EBF3) is a novel tumor suppressor gene with promoter hypermethylation in pediatric acute myeloid leukemia

Yan-Fang Tao; Li-Xiao Xu; Jun Lu; Shaoyan Hu; Fang Fang; Lan Cao; Pei-Fang Xiao; Xiao-Juan Du; Lichao Sun; Zhi-Heng Li; Na-Na Wang; Guang-Hao Su; Yanhong Li; Gang Li; He Zhao; Yi-Ping Li; Yun-Yun Xu; Huiting Zhou; Yi Wu; Mei-Fang Jin; Lin Liu; Xueming Zhu; Jian Ni; Jian Wang; Feng Xing; Wen-Li Zhao; Jian Pan

BackgroundPediatric acute myeloid leukemia (AML) comprises up to 20% of all childhood leukemia. Recent research shows that aberrant DNA methylation patterning may play a role in leukemogenesis. The epigenetic silencing of the EBF3 locus is very frequent in glioblastoma. However, the expression profiles and molecular function of EBF3 in pediatric AML is still unclear.MethodsTwelve human acute leukemia cell lines, 105 pediatric AML samples and 30 normal bone marrow/idiopathic thrombocytopenic purpura (NBM/ITP) control samples were analyzed. Transcriptional level of EBF3 was evaluated by semi-quantitative and real-time PCR. EBF3 methylation status was determined by methylation specific PCR (MSP) and bisulfite genomic sequencing (BGS). The molecular mechanism of EBF3 was investigated by apoptosis assays and PCR array analysis.ResultsEBF3 promoter was hypermethylated in 10/12 leukemia cell lines. Aberrant EBF3 methylation was observed in 42.9% (45/105) of the pediatric AML samples using MSP analysis, and the BGS results confirmed promoter methylation. EBF3 expression was decreased in the AML samples compared with control. Methylated samples revealed similar survival outcomes by Kaplan-Meier survival analysis. EBF3 overexpression significantly inhibited cell proliferation and increased apoptosis. Real-time PCR array analysis revealed 93 dysregulated genes possibly implicated in the apoptosis of EBF3-induced AML cells.ConclusionIn this study, we firstly identified epigenetic inactivation of EBF3 in both AML cell lines and pediatric AML samples for the first time. Our findings also showed for the first time that transcriptional overexpression of EBF3 could inhibit proliferation and induce apoptosis in AML cells. We identified 93 dysregulated apoptosis-related genes in EBF3-overexpressing, including DCC, AIFM2 and DAPK1. Most of these genes have never been related with EBF3 over expression. These results may provide new insights into the molecular mechanism of EBF3-induced apoptosis; however, further research will be required to determine the underlying details.Our findings suggest that EBF3 may act as a putative tumor suppressor gene in pediatric AML.


Neural Regeneration Research | 2017

Neuroprotective effects of autophagy inhibition on hippocampal glutamate receptor subunits after hypoxia-ischemia-induced brain damage in newborn rats

Li-Xiao Xu; Xiao-juan Tang; Yuanyuan Yang; Mei Li; Meifang Jin; Po Miao; Xin Ding; Ying Wang; Yanhong Li; Bin Sun; Xing Feng

Autophagy has been suggested to participate in the pathology of hypoxic-ischemic brain damage (HIBD). However, its regulatory role in HIBD remains unclear and was thus examined here using a rat model. To induce HIBD, the left common carotid artery was ligated in neonatal rats, and the rats were subjected to hypoxia for 2 hours. Some of these rats were intraperitoneally pretreated with the autophagy inhibitor 3-methyladenine (10 mM in 10 μL) or the autophagy stimulator rapamycin (1 g/kg) 1 hour before artery ligation. Our findings demonstrated that hypoxia-ischemia-induced hippocampal injury in neonatal rats was accompanied by increased expression levels of the autophagy-related proteins light chain 3 and Beclin-1 as well as of the AMPA receptor subunit GluR1, but by reduced expression of GluR2. Pretreatment with the autophagy inhibitor 3-methyladenine blocked hypoxia-ischemia-induced hippocampal injury, whereas pretreatment with the autophagy stimulator rapamycin significantly augmented hippocampal injury. Additionally, 3-methyladenine pretreatment blocked the hypoxia-ischemia-induced upregulation of GluR1 and downregulation of GluR2 in the hippocampus. By contrast, rapamycin further elevated hippocampal GluR1 levels and exacerbated decreased GluR2 expression levels in neonates with HIBD. Our results indicate that autophagy inhibition favors the prevention of HIBD in neonatal rats, at least in part, through normalizing GluR1 and GluR2 expression.


Cancer Cell International | 2017

Molecular mechanism of G1 arrest and cellular senescence induced by LEE011, a novel CDK4/CDK6 inhibitor, in leukemia cells

Yan-Fang Tao; Na-Na Wang; Li-Xiao Xu; Zhi-Heng Li; Xiao-Lu Li; Yun-Yun Xu; Fang Fang; Mei Li; Guang-Hui Qian; Yanhong Li; Yi-Ping Li; Yi Wu; Jun-Li Ren; Wei-Wei Du; Jun Lu; Xing Feng; Jian Wang; Wei-Qi He; Shaoyan Hu; Jian Pan

BackgroundOverexpression of cyclin D1 dependent kinases 4 and 6 (CDK4/6) is a common feature of many human cancers including leukemia. LEE011 is a novel inhibitor of both CDK4 and 6. To date, the molecular function of LEE011 in leukemia remains unclear.MethodsLeukemia cell growth and apoptosis following LEE011 treatment was assessed through CCK-8 and annexin V/propidium iodide staining assays. Cell senescence was assessed by β-galactosidase staining and p16INK4a expression analysis. Gene expression profiles of LEE011 treated HL-60 cells were investigated using an Arraystar Human LncRNA array. Gene ontology and KEGG pathway analysis were then used to analyze the differentially expressed genes from the cluster analysis.ResultsOur studies demonstrated that LEE011 inhibited proliferation of leukemia cells and could induce apoptosis. Hoechst 33,342 staining analysis showed DNA fragmentation and distortion of nuclear structures following LEE011 treatment. Cell cycle analysis showed LEE011 significantly induced cell cycle G1 arrest in seven of eight acute leukemia cells lines, the exception being THP-1 cells. β-Galactosidase staining analysis and p16INK4a expression analysis showed that LEE011 treatment can induce cell senescence of leukemia cells. LncRNA microarray analysis showed 2083 differentially expressed mRNAs and 3224 differentially expressed lncRNAs in LEE011-treated HL-60 cells compared with controls. Molecular function analysis showed that LEE011 induced senescence in leukemia cells partially through downregulation of the transcriptional expression of MYBL2.ConclusionsWe demonstrate for the first time that LEE011 treatment results in inhibition of cell proliferation and induction of G1 arrest and cellular senescence in leukemia cells. LncRNA microarray analysis showed differentially expressed mRNAs and lncRNAs in LEE011-treated HL-60 cells and we demonstrated that LEE011 induces cellular senescence partially through downregulation of the expression of MYBL2. These results may open new lines of investigation regarding the molecular mechanism of LEE011 induced cellular senescence.


BMC Pediatrics | 2017

Melatonin alleviates brain and peripheral tissue edema in a neonatal rat model of hypoxic-ischemic brain damage: the involvement of edema related proteins

Li-Xiao Xu; Yuan Lv; Yanhong Li; Xin Ding; Ying Wang; Xing Han; Ming-Hua Liu; Bin Sun; Xing Feng

BackgroundPrevious studies have indicated edema may be involved in the pathophysiology following hypoxic-ischemic encephalopathy (HIE), and melatonin may exhibit neuro-protection against brain insults. However, little is known regarding the mechanisms that involve the protective effects of melatonin in the brain and peripheral tissues after HIE. The present study aimed to examine the effects of melatonin on multiple organs, and the expression of edema related proteins in a neonatal rat model of hypoxic-ischemic brain damage (HIBD).MethodsOne hundred ninety-two neonatal rats were randomly divided into three subgroups that underwent a sham surgery or HIBD. After the HIBD or sham-injury, the rats received an intraperitoneal injection of melatonin or an equal volume vehicle, respectively. We investigated the effects of melatonin on brain, kidney, and colon edema via histological examination and the expression of edema related proteins, including AQP-4, ZO-1 and occludin, via qPCR and western blot.ResultsOur data indicated (1) Melatonin reduced the histological injury in the brain and peripheral organs induced by HIBD as assessed via H-E staining and transmission electron microscopy. (2) Melatonin alleviated the HIBD-induced cerebral edema characterized by increased brain water content. (3) HIBD induced significant changes of edema related proteins, such as AQP-4, ZO-1 and occludin, and these changes were partially reversed by melatonin treatment.ConclusionsThese findings provide substantial evidence that melatonin treatment has protective effects on the brain and peripheral organs after HIBD, and the edema related proteins, AQP4, ZO-1, and occludin, may indirectly contribute tothe mechanism of the edema protection by melatonin.


Human Immunology | 2015

Association between interleukin 1 receptor antagonist gene 86-bp VNTR polymorphism and sepsis: A meta-analysis

Fang Fang; Jian Pan; Yi-Ping Li; Li-Xiao Xu; Guang-Hao Su; Gang Li; Jian Wang

OBJECTIVE Many studies have focused on the relationship between interleukin 1 receptor antagonist (IL1RN) gene 86-bp VNTR polymorphism and sepsis, but the results remain inconsistent. Thus, a meta-analysis was carried out to derive a more precise estimation of the association between IL1RN 86-bp VNTR polymorphism and risk of sepsis and sepsis-related mortality. METHODS Relevant publications were searched in several widely used databases and six eligible studies were included in the meta-analysis. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association between IL1RN 86-bp VNTR polymorphism and risk of sepsis and sepsis-related mortality. RESULTS Significant associations between IL1RN 86-bp VNTR polymorphism and sepsis risk were observed in both overall meta-analysis for L2 versus 22 (OR=0.75, 95% CI=0.59-0.94) and severe sepsis subgroup for LL+L2 versus 22 (OR=0.67, 95% CI=0.47-0.93). L stands for long alleles containing three to six repeats; 2 stands for short allele containing two repeats. However, no significant sepsis mortality variation was detected for all genetic models. CONCLUSIONS According to the results of our meta-analysis, the IL1RN 86-bp VNTR polymorphism probably associates with sepsis risk but not with sepsis-related mortality.


Oncotarget | 2016

p21-activated kinase 1 (PAK1) expression correlates with prognosis in solid tumors: A systematic review and meta-analysis

Fang Fang; Jian Pan; Yi-Ping Li; Gang Li; Li-Xiao Xu; Guang-Hao Su; Zhi-Heng Li; Xing Feng; Jian Wang

p21 protein (Cdc42/Rac)-activated kinase 1 (PAK1) expression appears to be predictive of prognosis in various solid tumors, though the evidence is not yet conclusive. We therefore performed a meta-analysis to explore the relationship between PAK1 and prognosis in patients with solid tumors. Relevant publications were searched in several widely used databases, and 15 studies (3068 patients) were included in the meta-analysis. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association between PAK1 and prognosis. Associations between PAK1 expression and prognosis were observed for overall survival (HR = 2.81, 95% CI = 1.07-7.39) and disease-specific survival (HR = 2.15, 95% CI = 1.47-3.16). No such association was detected for time to tumor progression (HR = 1.78, 95% CI = 0.99-3.21).Our meta-analysis thus indicates that PAK1 expression may be a predictive marker of overall survival and disease-specific survival in patients with solid tumors.


Cancer Cell International | 2015

Analyzing the gene expression profile of anaplastic histology Wilms' tumor with real-time polymerase chain reaction arrays.

Jun Lu; Yan-Fang Tao; Zhi-Heng Li; Lan Cao; Shaoyan Hu; Na-Na Wang; Xiao-Juan Du; Lichao Sun; Wen-Li Zhao; Pei-Fang Xiao; Fang Fang; Li-Xiao Xu; Yanhong Li; Gang Li; He Zhao; Jian Ni; Jian Wang; Xing Feng; Jian Pan

BackgroundWilms’ tumor (WT) is one of the most common malignant neoplasms of the urinary tract in children. Anaplastic histology (unfavorable histology) accounts for about 10% of whole WTs, and it is the single most important histologic predictor of treatment response and survival in patients with WT; however, until now the molecular basis of this phenotype is not very clearly.MethodsA real-time polymerase chain reaction (PCR) array was designed and tested. Next, the gene expression profile of pediatric anaplastic histology WT and normal adjacent tissues were analyzed. These expression data were anlyzed with Multi Experiment View (MEV) cluster software further. Datasets representing genes with altered expression profiles derived from cluster analyses were imported into the Ingenuity Pathway Analysis Tool (IPA).Results88 real-time PCR primer pairs for quantitative gene expression analysis of key genes involved in pediatric anaplastic histology WT were designed and tested. The gene expression profile of pediatric anaplastic histology WT is significantly different from adjacent normal controls; we identified 15 genes that are up-regulated and 16 genes that are down-regulated in the former. To investigate biological interactions of these differently regulated genes, datasets representing genes with altered expression profiles were imported into the IPA for further analysis, which revealed three significant networks: Cancer, Hematological Disease, and Gene Expression, which included 27 focus molecules and a significance score of 43. The IPA analysis also grouped the differentially expressed genes into biological mechanisms related to Cell Death and Survival 1.15E−12, Cellular Development 2.84E−11, Cellular Growth and Proliferation 2.84E-11, Gene Expression 4.43E−10, and DNA Replication, Recombination, and Repair 1.39E−07. The important upstream regulators of pediatric anaplastic histology WT were TP53 and TGFβ1 signaling (P = 1.15E−14 and 3.79E−13, respectively).ConclusionsOur study demonstrates that the gene expression profile of pediatric anaplastic histology WT is significantly different from adjacent normal tissues with real-time PCR array. We identified some genes that are dysregulated in pediatric anaplastic histology WT for the first time, such as HDAC7, and IPA analysis showed the most important pathways for pediatric anaplastic histology WT are TP53 and TGFβ1 signaling. This work may provide new clues into the molecular mechanisms behind pediatric anaplastic histology WT.


International Journal of Molecular Medicine | 2014

Zinc finger protein 382 is downregulated by promoter hypermethylation in pediatric acute myeloid leukemia patients

Yan-Fang Tao; Shaoyan Hu; Jun Lu; Lan Cao; Wen-Li Zhao; Pei-Fang Xiao; Li-Xiao Xu; Zhi-Heng Li; Na-Na Wang; Xiao-Juan Du; Lichao Sun; He Zhao; Fang Fang; Guang-Hao Su; Yanhong Li; Yi-Ping Li; Yun-Yun Xu; Jian Ni; Jian Wang; Xing Feng; Jian Pan

Acute myeloid leukemia (AML) is the second-most common form of leukemia in children. Aberrant DNA methylation patterns are characteristic of AML. Zinc finger protein 382 (ZNF382) has been suggested to be a tumor suppressor gene possibly regulated by promoter hypermethylation in various types of human cancer. However, ZNF382 expression and methylation status in pediatric AML is unknown. In the present study, ZNF382 transcription levels were evaluated by quantitative reverse-transcription PCR. Methylation status was investigated by methylation-specific (MSP) PCR and bisulfate genomic sequencing (BGS). The prognostic significance of ZNF382 expression and promoter methylation was assessed in 105 cases of pediatric AML. The array data suggested that the ZNF382 promoter was hypermethylated in the AML cases examined. MSP PCR and BGS analysis revealed that ZNF382 was hypermethylated in leukemia cell lines. Furthermore, treatment with 5-aza-2′-deoxycytidine (5-Aza) upregulated ZNF382 expression in the selected leukemia cell lines. The aberrant methylation of ZNF382 was observed in 10% (2/20) of the control samples compared with 26.7% (28/105) of the AML samples. ZNF382 expression was significantly decreased in the 105 AML patients compared with the controls. Patients with ZNF382 methylation showed lower ZNF382 transcript levels compared with patients exhibiting no methylation. There were no significant differences in clinical characteristics or cytogenetic analysis between the patients with or without ZNF382 methylation. ZNF382 methylation correlated with minimal residual disease (MRD). Kaplan-Meier survival analysis revealed similar survival times in the samples with ZNF382 methylation, and multivariate analysis revealed that ZNF382 methylation was not an independent prognostic factor in pediatric AML. The epigenetic inactivation of ZNF382 by promoter hypermethylation can be observed in AML cell lines and pediatric AML samples. Therefore, our study suggests that ZNF382 may be considered a putative tumor suppressor gene in pediatric AML. However, further studies focusing on the mechanisms responsible for ZNF382 downregulation in pediatric leukemia are required.

Collaboration


Dive into the Li-Xiao Xu's collaboration.

Top Co-Authors

Avatar

Jian Ni

Nanjing Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rong-Hu Li

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge