Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Li Xu is active.

Publication


Featured researches published by Li Xu.


Journal of Chromatography A | 2008

Novel approach to microwave-assisted extraction and micro-solid-phase extraction from soil using graphite fibers as sorbent

Li Xu; Hian Kee Lee

A single-step extraction-cleanup procedure involving microwave-assisted extraction (MAE) and micro-solid-phase extraction (micro-SPE) has been developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) from soil samples. Micro-SPE is a relatively new extraction procedure that makes use of a sorbent enclosed within a sealed polypropylene membrane envelope. In the present work, for the first time, graphite fiber was used as a sorbent material for extraction. MAE-micro-SPE was used to cleanup sediment samples and to extract and preconcentrate five PAHs in sediment samples prepared as slurries with addition of water. The best extraction conditions comprised of microwave heating at 50 degrees C for a duration of 20 min, and an elution (desorption) time of 5 min using acetonitrile with sonication. Using gas chromatography (GC)-flame ionization detection (FID), the limits of detection (LODs) of the PAHs ranged between 2.2 and 3.6 ng/g. With GC-mass spectrometry (MS), LODs were between 0.0017 and 0.0057 ng/g. The linear ranges were between 0.1 and 50 or 100 microg/g for GC-FID analysis, and 1 and 500 or 1000 ng/g for GC-MS analysis. Granular activated carbon was also used for the micro-SPE device but was found to be not as efficient in the PAH extraction. The MAE-micro-SPE method was successfully used for the extraction of PAHs in river and marine sediments, demonstrating its applicability to real environmental solid matrixes.


Journal of Chromatography A | 2009

Chemical reactions in liquid-phase microextraction.

Li Xu; Chanbasha Basheer; Hian Kee Lee

In recent years, liquid-phase microextraction (LPME), a microscale implementation of liquid-liquid extraction, has become a very popular sample pretreatment technique because it combines extraction and enrichment, and is inexpensive, easy to operate and nearly solvent-free. Especially so in hollow fiber-protected LPME, sample cleanup is also effected. Essentially, owing to its high sample-to-extracting solvent volume ratio, LPME can achieve high analyte enrichment. Since its advent, the technique has been widely used, and applied to environmental, pharmaceutical, biological and forensic analyses. This review focuses on developments relating to chemical reactions associated with LPME applications, in contrast to conventional, straightforward extractions in which analytes remain as they are during the extraction process. Chemical reactions brought about during LPME serve to promote the extractability of the analytes (thus expanding the scope of applicability of the technique), facilitate their (analyte) compatibility with the analytical system and/or improve detection sensitivity. The reactions that are usually enabled during LPME include ion-pair extraction (carrier-mediated membrane transport), complexation, chemical (pre-extraction, in situ, and post-extraction) derivatization, phase-transfer catalysis and other special affinity reactions. Strategies on chemical reactions in LPME are overviewed in this report.


Journal of Chromatography A | 2008

Electro membrane isolation of nerve agent degradation products across a supported liquid membrane followed by capillary electrophoresis with contactless conductivity detection.

Li Xu; Peter C. Hauser; Hian Kee Lee

In the present study, electro membrane isolation (EMI) of four nerve agent degradation products has been successfully explored. In the procedure, a polypropylene sheet membrane folded into an envelope with an open end with its wall pores impregnated with 1-octanol was employed as the artificial supported liquid membrane (SLM). The envelope containing the extractant or aqueous acceptor phase (at pH 6.8) was immersed in the sample or donor phase (also aqueous at a pH of 6.8) for extraction. This ensured that the target analytes were fully ionized. A voltage was then applied, with the negative electrode placed in the donor phase with agitation, and the positive electrode in the acceptor phase. The ionized analytes were thus driven to migrate from the donor phase across the SLM to the acceptor phase. The factors influential to extraction: type of organic solvent, voltage, agitation speed, extraction time, pH of the donor and acceptor phase and concentration of humic acids were investigated in detail. After extraction, the acceptor phase was collected and directly injected for capillary electrophoretic (CE) analysis. Combined with capacitively coupled contactless conductivity detection (C(4)D), the direct detection of these compounds could be achieved. Moreover, large-volume sample injection was employed to further enhance the sensitivity of this method. Limits of detection (LODs) as low as ng/mL were reached for the studied analytes, with overall LOD enhancements of four orders of magnitude.


Journal of Chromatography A | 2008

Preparation, characterization and analytical application of a hybrid organic-inorganic silica-based monolith.

Li Xu; Hian Kee Lee

In the present study, a mercapto groups-incorporated hybrid silica-based monolith, which consists of a continuous porous silica backbone, was successfully synthesized by sol-gel technology. The hybrid silica monolith was characterized by various techniques, such as elemental analysis, scanning electron microscopy, diffused infrared spectroscopy and low temperature nitrogen desorption/adsorption measurements. The results showed that the monolith contains high sulfur content (up to 3.05%) with a hierarchical porous structure (throughpores and mesopores) and large specific surface area (467 m(2)/g). Due to the favorable chemical reactivity of mercapto pendant moieties, the hybrid monolith can be facilely derivatized to yield various functional groups. In this study, they were oxidized by hydrogen peroxide (30%, w/w) to produce sulfonic acid groups, which exhibited excellent cation-exchange capability. The application of this material is demonstrated by in-tube microextraction of anaesthetics followed by capillary electrophoretic separation. The monolith can be effectively applied to purify and enrich the target analytes in human urine.


Journal of Chromatography A | 2009

Solvent-bar microextraction―Using a silica monolith as the extractant phase holder

Li Xu; Hian Kee Lee

In this paper, a novel liquid-phase microextraction (LPME) approach, based on solvent-bar microextraction (SBME), was developed in which a silica monolith was used as the extractant solvent holder. Owing to the porous nature of the monolith, the extractant solvent could be easily held in the material; when the monolith containing the extractant solvent was exposed to the sample solution, analytes could directly diffuse from the sample solution into the extractant solvent. Polycyclic aromatic hydrocarbons (PAHs) were used as model analytes to evaluate the procedure. Through the investigation of the effect of agitation speed, extraction time, length of the monolith (that determined the volume of organic extractant solvent) and salt concentration on extraction efficiency, the following optimal extraction conditions were obtained: stirring at 1000 rpm for 30 min without salt addition using a 4-mm silica monolith. The limits of detection ranged from 3.9 pg/mL to 28.8 pg/mL, with relative standard deviations of between 8.16% and 10.5% on the same silica monolith. The linearity was 0.05-200 ng/mL for fluoranthene and pyrene, and 0.5-200 ng/mL for chrysene and benzo[b]fluoranthene, with acceptable correlation coefficient. When this method was applied for the spiked real river sample, the relative recoveries ranged from 87.1% to 100.7% for the tested PAHs. This method was also compared to polymeric hollow fiber-based SBME and hollow fiber-protected LPME and found to provide better results. Additionally, compared with the polymeric hollow fiber, the silica monolith possesses good resistance to extreme conditions, such as high temperature and pH, and is more compatible with various organic solvents. This is the first report of an application of a monolithic material for LPME, and as a solvent holder for SBME. It extends the scope of applications of such materials, to analytical chemistry, specifically to sample preparation.


Journal of Chromatography A | 2008

Ion-pair liquid-liquid-liquid microextraction of nerve agent degradation products followed by capillary electrophoresis with contactless conductivity detection.

Li Xu; Xiao Yang Gong; Hian Kee Lee; Peter C. Hauser

The four nerve agent degradation products methylphosphonic acid (MPA), ethyl methylphosphonic acid (EMPA), isopropyl methylphosphonic acid (IMPA) and cyclohexyl methylphosphonic acid (CMPA) have been successfully extracted from aqueous sample solution by ion-pair liquid-liquid-liquid microextraction. In this procedure, the target analytes in the sample solution were converted into their ion-pair complexes with tri-n-butyl amine and then extracted by an organic solvent (1-octanol) layer on top of the sample solution. Simultaneously, the analytes were back-extracted into a drop of an aqueous acceptor solution which was suspended in the organic phase at a microsyringe needle tip. The factors influential to extraction: type of organic solvent, type of ion-pair reagent and its concentration, pH values of sample solution and acceptor aqueous phase, stirring rate and extraction time were investigated in detail. After extraction, the drop of the acceptor solution was withdrawn into the syringe and injected into a capillary electrophoresis system for analysis. Using contactless conductivity detection, direct quantification of these compounds is possible. Moreover, large-volume sample injection was employed for further preconcentration. Improvements in the limits of detection between 2.5 and 4 orders of magnitude could be achieved and concentrations at the ng/mL level can be determined. This newly established approach was successfully applied to a spiked river water sample.


Journal of Chromatography A | 2010

Solvent-bar microextraction of herbicides combined with non-aqueous field-amplified sample injection capillary electrophoresis

Li Xu; Chanbasha Basheer; Hian Kee Lee

Solvent-bar microextraction (SBME) based on two-phase (water-to-organic) extraction was for the first time used as the sample pretreatment method for the non-aqueous capillary electrophoresis (NACE) of herbicides of environmental concern. Due to the compatibility of the extractant organic solvent and the NACE separation system, the extract could be introduced directly to the CE system after SBME. Through investigations of the effect of sample pH, extraction time, agitation speed and salt addition on extraction efficiency, the most suitable extraction conditions were determined: sample solution at a pH of 1, without added salt, and stirring at 700 revolutions per minute for 30 min. SBME as applied here was also compared with single-drop microextraction and hollow fiber-protected liquid-phase microextraction. SBME showed the highest extraction efficiency. In addition, field-amplified sample injection with pre-introduced organic solvent plug removal using the electroosmotic flow as a pump (FAEP) was used to enhance the sensitivity further in NACE. Based on studies of the effect of different organic solvents, different lengths of the organic plugs and different volumes of sample injection on stacking efficiency under the most suitable separation conditions, methanol was found to be the most efficient solvent for on-line preconcentration. Combined with SBME, FAEP-NACE achieved limits of detection of between 0.08 ng/mL and 0.14 ng/mL for the studied analytes. This preconcentration approach for NACE was demonstrated to be amenable to aqueous environmental samples by applying it to spiked river water.


Journal of Chromatography A | 2009

Determination of nerve agent degradation products by capillary electrophoresis using field-amplified sample stacking injection with the electroosmotic flow pump and contactless conductivity detection

Li Xu; Peter C. Hauser; Hian Kee Lee

In the present study, field-amplified sample stacking injection using the electroosmotic flow pump (FAEP) was developed for the capillary electrophoretic separation of the four nerve agent degradation products methylphosphonic acid (MPA), ethyl methylphosphonic acid (EMPA), isopropyl methylphosphonic acid (IMPA) and cyclohexyl methylphosphonic acid (CMPA). Coupled to contactless conductivity detection, direct quantification of these non-UV active compounds could be achieved. Sensitivity enhancement of up to 500 to 750-fold could be obtained. The newly established approach was applied to the determination of the analytes in river water and aqueous extracts of soil. Detection limits of 0.5, 0.7, 1.4 and 2.7 ng/mL were obtained for MPA, EMPA, IMPA and CMPA, respectively, in river water and 0.09, 0.14, 0.44 and 0.22 microg/g, respectively, in soil.


Journal of Chromatography A | 2009

Sulfonated polyvinyl chloride fibers for cation-exchange microextraction

Li Xu; Hian Kee Lee

Polyvinyl chloride (PVC) fiber was derivatized by concentrated sulfuric acid to yield sulfonated PVC (PVC-SO3H). The PVC-SO3H fiber had dual properties as a sorbent, based on cation-exchange and hydrophobicity. In the present study, the novel fiber was used directly as an individual device for extraction purposes in the cation-exchange microextraction of anaesthetics, followed by high-performance liquid chromatography-UV analysis. The results demonstrated that this PVC-SO3H fiber-based microextraction afforded convenient operation and cost-effective application to basic analytes. The limits of detection for four anaesthetics ranged from 1.2 to 6.0 ng/mL. No carryover (because of its disposable usage), and no loss of sorbent phase (which normally occurs in stir-bar sorptive extraction) during extraction were observed.


Journal of Chromatography A | 2007

Developments in single-drop microextraction

Li Xu; Chanbasha Basheer; Hian Kee Lee

Collaboration


Dive into the Li Xu's collaboration.

Top Co-Authors

Avatar

Hian Kee Lee

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chanbasha Basheer

King Fahd University of Petroleum and Minerals

View shared research outputs
Top Co-Authors

Avatar

Zhi-Guo Shi

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge