Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Li-Ying Song is active.

Publication


Featured researches published by Li-Ying Song.


Biotechnology for Biofuels | 2014

Overexpression of the soybean transcription factor GmDof4 significantly enhances the lipid content of Chlorella ellipsoidea

Jianhui Zhang; Qiang Hao; Lili Bai; Jin Xu; Weibo Yin; Li-Ying Song; Ling Xu; Xuejie Guo; Chengming Fan; Yuhong Chen; Jue Ruan; Shan-Ting Hao; Yuanguang Li; Richard R.-C. Wang; Zanmin Hu

BackgroundThe lipid content of microalgae is regarded as an important indicator for biodiesel. Many attempts have been made to increase the lipid content of microalgae through biochemical and genetic engineering. Significant lipid accumulation in microalgae has been achieved using biochemical engineering, such as nitrogen starvation, but the cell growth was severely limited. However, enrichment of lipid content in microalgae by genetic engineering is anticipated. In this study, GmDof4 from soybean (Glycine max), a transcription factor affecting the lipid content in Arabidopsis, was transferred into Chlorella ellipsoidea. We then investigated the molecular mechanism underlying the enhancement of the lipid content of transformed C. ellipsoidea.ResultsWe constructed a plant expression vector, pGmDof4, and transformed GmDof4 into C. ellipsoidea by electroporation. The resulting expression of GmDof4 significantly enhanced the lipid content by 46.4 to 52.9%, but did not affect the growth rate of the host cells under mixotrophic culture conditions. Transcriptome profiles indicated that 1,076 transcripts were differentially regulated: of these, 754 genes were significantly upregulated and 322 genes were significantly downregulated in the transgenic strains under mixotrophic culture conditions. There are 22 significantly regulated genes (|log2 ratio| >1) involved in lipid and fatty acid metabolism. Quantitative real-time PCR and an enzyme activity assay revealed that GmDof4 significantly up-regulated the gene expression and enzyme activity of acetyl-coenzyme A carboxylase, a key enzyme for fatty acid synthesis, in transgenic C. ellipsoidea cells.ConclusionsThe hetero-expression of a transcription factor GmDof4 gene from soybean can significantly increase the lipid content but not affect the growth rate of C. ellipsoidea under mixotrophic culture conditions. The increase in lipid content could be attributed to the large number of genes with regulated expression. In particular, the acetyl-coenzyme A carboxylase gene expression and enzyme activity were significantly upregulated in the transgenic cells. Our research provides a new way to increase the lipid content of microalgae by introducing a specific transcription factor to microalgae strains that can be used for the biofuel and food industries.


Journal of Experimental Botany | 2010

Identification and functional analysis of the genes encoding Δ6-desaturase from Ribes nigrum†

Li-Ying Song; Wan-Xiang Lu; Jun Hu; Yan Zhang; Weibo Yin; Yuhong Chen; Shan-Ting Hao; Bai-Lin Wang; Richard R.-C. Wang; Zanmin Hu

Gamma-linolenic acid (γ-linolenic acid, GLA; C18:3 Δ6, 9, 12) belongs to the omega-6 family and exists primarily in several plant oils, such as evening primrose oil, blackcurrant oil, and borage oil. Δ6-desaturase is a key enzyme involved in the synthesis of GLA. There have been no previous reports on the genes encoding Δ6-desaturase in blackcurrant (Ribes nigrum L.). In this research, five nearly identical copies of Δ6-desaturase gene-like sequences, named RnD8A, RnD8B, RnD6C, RnD6D, and RnD6E, were isolated from blackcurrant. Heterologous expression in Saccharomyces cerevisiae and/or Arabidopsis thaliana confirmed that RnD6C/D/E were Δ6-desaturases that could use both α-linolenic acids (ALA; C18:3 Δ9,12,15) and linoleic acid (LA; C18:2 Δ9,12) precursors in vivo, whereas RnD8A/B were Δ8-sphlingolipid desaturases. Expression of GFP tagged with RnD6C/D/E showed that blackcurrant Δ6-desaturases were located in the mitochondrion (MIT) in yeast and the endoplasmic reticulum (ER) in tobacco. GC-MS results showed that blackcurrant accumulated GLA and octadecatetraenoic acids (OTA; C18:4 Δ6,9,12,15) mainly in seeds and a little in other organs and tissues. RT-PCR results showed that RnD6C and RnD6E were expressed in all the tissues at a low level, whereas RnD6D was expressed at a high level only in seeds, leading to the accumulation of GLA and OTA in seeds. This research provides new insights to our understanding of GLA synthesis and accumulation in plants and the evolutionary relationship of this class of desaturases, and new clues as to the amino acid determinants which define precise enzyme activity.


Biochemical and Biophysical Research Communications | 2013

The role of C-terminal amino acid residues of a Δ6-fatty acid desaturase from blackcurrant ☆

Li-Ying Song; Wan-Xiang Lu; Jun Hu; Weibo Yin; Yuhong Chen; Bai-Lin Wang; Richard R.-C. Wang; Zanmin Hu

Δ⁶-fatty acid desaturase is an important enzyme in the catalytic synthesis of polyunsaturated fatty acids. Using domain swapping and a site-directed mutagenesis strategy, we found that the region of the C-terminal 67 amino acid residues of Δ⁶-fatty acid desaturase RnD6C from blackcurrant was essential for its catalytic activity and that seven different residues between RnD6C and RnD8A in that region were involved in the desaturase activity. Compared with RnD6C, the activity of the following mutations, V394A, K395I, F411L, S436P, VK3945AI and IS4356VP, was significantly decreased, whereas the activity of I417T was significantly increased. The amino acids N, T and Y in the last four residues also play a certain role in the desaturase activity.


Biochemical and Biophysical Research Communications | 2012

Enhanced tolerance to NaCl and LiCl stresses by over-expressing Caragana korshinskii sodium/proton exchanger 1 (CkNHX1) and the hydrophilic C terminus is required for the activity of CkNHX1 in Atsos3-1 mutant and yeast.

Dahai Yang; Li-Ying Song; Jun Hu; Weibo Yin; Zhi-Guo Li; Yuhong Chen; Xiaohua Su; Richard R.-C. Wang; Zanmin Hu

Sodium/proton exchangers (NHX antiporters) play important roles in plant responses to salt stress. Previous research showed that hydrophilic C-terminal region of Arabidopsis AtNHX1 negatively regulates the Na(+)/H(+) transporting activity. In this study, CkNHX1 were isolated from Caragana korshinskii, a pea shrub with high tolerance to salt, drought, and cold stresses. Transcripts of CkNHX1 were detected predominantly in roots, and were significantly induced by NaCl stress in stems. Transgenic yeast and Arabidopsisthalianasos3-1 (Atsos3-1) mutant over-expressing CkNHX1 and its hydrophilic C terminus-truncated derivative, CkNHX1-ΔC, were generated and subjected to NaCl and LiCl stresses. Expression of CkNHX1 significantly enhanced the resistance to NaCl and LiCl stresses in yeast and Atsos3-1 mutant. Whereas, compared with expression of CkNHX1, the expression of CkNHX1-ΔC had much less effect on NaCl tolerance in Atsos3-1 and LiCl tolerance in yeast and Atsos3-1. All together, these results suggest that the predominant expression of CkNHX1 in roots might contribute to keep C. korshinskii adapting to the high salt condition in this plants living environment; CkNHX1 could recover the phenotype of Atsos3-1 mutant; and the hydrophilic C-terminal region of CkNHX1 should be required for Na(+)/H(+) and Li(+)/H(+) exchanging activity of CkNHX1.


Journal of Experimental Botany | 2010

Identification and functional analysis of the genes encoding D 6 -desaturase from Ribes nigrum †

Li-Ying Song; Wan-Xiang Lu; Jun Hu; Yan Zhang; Weibo Yin; Yuhong Chen; Shan-Ting Hao; Bai-Lin Wang; Richard R.-C. Wang; Zanmin Hu

Gamma-linolenic acid (γ-linolenic acid, GLA; C18:3 Δ6, 9, 12) belongs to the omega-6 family and exists primarily in several plant oils, such as evening primrose oil, blackcurrant oil, and borage oil. Δ6-desaturase is a key enzyme involved in the synthesis of GLA. There have been no previous reports on the genes encoding Δ6-desaturase in blackcurrant (Ribes nigrum L.). In this research, five nearly identical copies of Δ6-desaturase gene-like sequences, named RnD8A, RnD8B, RnD6C, RnD6D, and RnD6E, were isolated from blackcurrant. Heterologous expression in Saccharomyces cerevisiae and/or Arabidopsis thaliana confirmed that RnD6C/D/E were Δ6-desaturases that could use both α-linolenic acids (ALA; C18:3 Δ9,12,15) and linoleic acid (LA; C18:2 Δ9,12) precursors in vivo, whereas RnD8A/B were Δ8-sphlingolipid desaturases. Expression of GFP tagged with RnD6C/D/E showed that blackcurrant Δ6-desaturases were located in the mitochondrion (MIT) in yeast and the endoplasmic reticulum (ER) in tobacco. GC-MS results showed that blackcurrant accumulated GLA and octadecatetraenoic acids (OTA; C18:4 Δ6,9,12,15) mainly in seeds and a little in other organs and tissues. RT-PCR results showed that RnD6C and RnD6E were expressed in all the tissues at a low level, whereas RnD6D was expressed at a high level only in seeds, leading to the accumulation of GLA and OTA in seeds. This research provides new insights to our understanding of GLA synthesis and accumulation in plants and the evolutionary relationship of this class of desaturases, and new clues as to the amino acid determinants which define precise enzyme activity.


Biochemical and Biophysical Research Communications | 2011

Newly identified essential amino acid residues affecting Δ8-sphingolipid desaturase activity revealed by site-directed mutagenesis

Shu-Fen Li; Li-Ying Song; Guo-Jun Zhang; Weibo Yin; Yuhong Chen; Richard R.-C. Wang; Zanmin Hu

In order to identify amino acid residues crucial for the enzymatic activity of Δ(8)-sphingolipid desaturases, a sequence comparison was performed among Δ(8)-sphingolipid desaturases and Δ(6)-fatty acid desaturases from various plants. In addition to the known conserved cytb(5) (cytochrome b(5)) HPGG motif and three conserved histidine boxes, they share additional 15 completely conserved residues. A series of site-directed mutants were generated using our previously isolated Δ(8)-sphingolipid desaturase gene from Brassica rapa to evaluate the importance of these residues to the enzyme function. The mutants were functionally characterized by heterologous expression in yeast, allowing the identification of the products of the enzymes. The results revealed that residues H63, N203, D208, D210, and G368 were obligatorily required for the enzymatic activity, and substitution of the residues F59, W190, W345, L369 and Q372 markedly decreased the enzyme activity. Among them, replacement of the residues W190, L369 and Q372 also has significant influence on the ratio of the two enzyme products. Information obtained in this work provides the molecular basis for the Δ(8)-sphingolipid desaturase activity and aids in our understanding of the structure-function relationships of the membrane-bound desaturases.


Journal of Experimental Botany | 2010

Identification and functional analysis of the genes encoding Delta6-desaturase from Ribes nigrum.

Li-Ying Song; Wan-Xiang Lu; Jun Hu; Yingxin Zhang; Weibo Yin; Yuhong Chen; Shan-Ting Hao; Bai-Lin Wang; Richard R.-C. Wang; Zanmin Hu

Gamma-linolenic acid (γ-linolenic acid, GLA; C18:3 Δ6, 9, 12) belongs to the omega-6 family and exists primarily in several plant oils, such as evening primrose oil, blackcurrant oil, and borage oil. Δ6-desaturase is a key enzyme involved in the synthesis of GLA. There have been no previous reports on the genes encoding Δ6-desaturase in blackcurrant (Ribes nigrum L.). In this research, five nearly identical copies of Δ6-desaturase gene-like sequences, named RnD8A, RnD8B, RnD6C, RnD6D, and RnD6E, were isolated from blackcurrant. Heterologous expression in Saccharomyces cerevisiae and/or Arabidopsis thaliana confirmed that RnD6C/D/E were Δ6-desaturases that could use both α-linolenic acids (ALA; C18:3 Δ9,12,15) and linoleic acid (LA; C18:2 Δ9,12) precursors in vivo, whereas RnD8A/B were Δ8-sphlingolipid desaturases. Expression of GFP tagged with RnD6C/D/E showed that blackcurrant Δ6-desaturases were located in the mitochondrion (MIT) in yeast and the endoplasmic reticulum (ER) in tobacco. GC-MS results showed that blackcurrant accumulated GLA and octadecatetraenoic acids (OTA; C18:4 Δ6,9,12,15) mainly in seeds and a little in other organs and tissues. RT-PCR results showed that RnD6C and RnD6E were expressed in all the tissues at a low level, whereas RnD6D was expressed at a high level only in seeds, leading to the accumulation of GLA and OTA in seeds. This research provides new insights to our understanding of GLA synthesis and accumulation in plants and the evolutionary relationship of this class of desaturases, and new clues as to the amino acid determinants which define precise enzyme activity.


Journal of Genetics and Genomics | 2012

Isolation and Functional Characterisation of the Genes Encoding Δ8-Sphingolipid Desaturase from Brassica rapa

Shu-Fen Li; Li-Ying Song; Weibo Yin; Yuhong Chen; Liang Chen; Ji-Lin Li; Richard R.-C. Wang; Zanmin Hu


Planta | 2014

Identification of the substrate recognition region in the Δ6-fatty acid and Δ8-sphingolipid desaturase by fusion mutagenesis

Li-Ying Song; Yan Zhang; Shu-Fen Li; Jun Hu; Weibo Yin; Yuhong Chen; Shan-Ting Hao; Bai-Lin Wang; Richard R.-C. Wang; Zanmin Hu


Archive | 2012

Alexin and application thereof to preparation of antibacterial medicament

Zanmin Hu; Yuhong Chen; Weibo Yin; Lili Bai; Yongru Sun; Li-Ying Song; Shimin Zhao; Fan Chen; Chengcai Chu; Yonghua Sun; Heming Yang; Jianzhong Zhang; Yihong Peng; Yingtao Zhang

Collaboration


Dive into the Li-Ying Song's collaboration.

Top Co-Authors

Avatar

Weibo Yin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuhong Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zanmin Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Hu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shan-Ting Hao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yan Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wan-Xiang Lu

College of Horticulture

View shared research outputs
Top Co-Authors

Avatar

Lili Bai

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shu-Fen Li

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge