Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liam J. Holt is active.

Publication


Featured researches published by Liam J. Holt.


Science | 2009

Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution.

Liam J. Holt; Brian B. Tuch; Judit Villén; Alexander D. Johnson; Steven P. Gygi; David O. Morgan

Cataloging Kinase Targets Protein phosphorylation is a central mechanism in the control of many biological processes (see the Perspective by Collins). It remains a challenge to determine the complete range of substrates and phosphorylation sites altered by a kinase like cyclin-dependent kinase 1 (Cdk1), which controls cell division in yeast. Holt et al. (p. 1682) engineered a strain of yeast to express a modified Cdk1 molecule that could be inhibited by a specific small-molecule inhibitor. The range of Cdk1-dependent phosphorylation was assessed by quantitative mass spectrometry, which revealed many previously uncharacterized substrates for Cdk1. In addition to phosphorylation on serine and threonine residues, which appears to be evolutionarily ancient, tyrosine phosphorylation occurs primarily in multicellular organisms. Tan et al. (p. 1686, published online 9 July) compared the overall presence of tyrosine residues in human proteins (which are frequently phosphorylated) and in yeast proteins (which are not). Loss of tyrosine residues has occurred during evolution, presumably to reduce adventitious tyrosine phosphorylation. The range of sites phosphorylated by a protein kinase in yeast provides clues to the evolution of such regulatory mechanisms. To explore the mechanisms and evolution of cell-cycle control, we analyzed the position and conservation of large numbers of phosphorylation sites for the cyclin-dependent kinase Cdk1 in the budding yeast Saccharomyces cerevisiae. We combined specific chemical inhibition of Cdk1 with quantitative mass spectrometry to identify the positions of 547 phosphorylation sites on 308 Cdk1 substrates in vivo. Comparisons of these substrates with orthologs throughout the ascomycete lineage revealed that the position of most phosphorylation sites is not conserved in evolution; instead, clusters of sites shift position in rapidly evolving disordered regions. We propose that the regulation of protein function by phosphorylation often depends on simple nonspecific mechanisms that disrupt or enhance protein-protein interactions. The gain or loss of phosphorylation sites in rapidly evolving regions could facilitate the evolution of kinase-signaling circuits.


Nature | 2008

Positive feedback sharpens the anaphase switch.

Liam J. Holt; Andrew N. Krutchinsky; David O. Morgan

At the onset of anaphase, sister-chromatid cohesion is dissolved abruptly and irreversibly, ensuring that all chromosome pairs disjoin almost simultaneously. The regulatory mechanisms that generate this switch-like behaviour are unclear. Anaphase is initiated when a ubiquitin ligase, the anaphase-promoting complex (APC), triggers the destruction of securin, thereby allowing separase, a protease, to disrupt sister-chromatid cohesion. Here we demonstrate that the cyclin-dependent kinase 1 (Cdk1)-dependent phosphorylation of securin near its destruction-box motif inhibits securin ubiquitination by the APC. The phosphatase Cdc14 reverses securin phosphorylation, thereby increasing the rate of securin ubiquitination. Because separase is known to activate Cdc14 (refs 5 and 6), our results support the existence of a positive feedback loop that increases the abruptness of anaphase. Consistent with this model, we show that mutations that disrupt securin phosphoregulation decrease the synchrony of chromosome segregation. Our results also suggest that coupling securin degradation with changes in Cdk1 and Cdc14 activities helps coordinate the initiation of sister-chromatid separation with changes in spindle dynamics.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Phase transitions in biogenic amorphous calcium carbonate

Yutao U. T. Gong; Christopher E. Killian; Ian C. Olson; Narayana Appathurai; Audra L. Amasino; Michael C. Martin; Liam J. Holt; Fred H. Wilt; P. U. P. A. Gilbert

Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC·H2O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC·H2O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC·H2O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC·H2O in vitro.


Journal of Cell Science | 2009

The class I bHLH factors E2-2A and E2-2B regulate EMT

Verónica R. Sobrado; Gema Moreno-Bueno; Eva Cubillo; Liam J. Holt; M. Angela Nieto; Francisco Portillo; Amparo Cano

Functional loss of the cell-cell adhesion molecule E-cadherin is an essential event for epithelial-mesenchymal transition (EMT), a process that allows cell migration during embryonic development and tumour invasion. In most carcinomas, transcriptional repression has emerged as the main mechanism responsible for E-cadherin downregulation. Here, we report the identification of class I bHLH factor E2-2 (TCF4/ITF2) as a new EMT regulator. Both isoforms of E2-2 (E2-2A and E2-2B) induce a full EMT when overexpressed in MDCK cells but without affecting the tumorigenic properties of parental cells, in contrast to other EMT inducers, such as Snail1 or class I bHLH E47. E-cadherin repression mediated by E2-2 is indirect and independent of proximal E-boxes of the promoter. Knockdown studies indicate that E2-2 expression is dispensable for maintenance of the EMT driven by Snail1 and E47. Comparative gene-profiling analysis reveals that E2-2 factors induce similar, yet distinct, genetic programs to that induced by E47 in MDCK cells. These results, together with the embryonic expression pattern of Tcf4 and E2A (which encodes E12/E47), support a distinct role for E2-2 and suggest an interesting interplay between E-cadherin repressors in the regulation of physiological and pathological EMT processes.


Science | 2016

The Genome Project–Write

Jef D. Boeke; George M. Church; Andrew Hessel; Nancy J. Kelley; Adam P. Arkin; Yizhi Cai; Rob Carlson; Aravinda Chakravarti; Virginia W. Cornish; Liam J. Holt; Farren J. Isaacs; Todd Kuiken; Marc J. Lajoie; Tracy Lessor; Jeantine E. Lunshof; Matthew T. Maurano; Leslie A. Mitchell; Jasper Rine; Susan J. Rosser; Neville E. Sanjana; Pamela A. Silver; David Valle; Harris H. Wang; Jeffrey C. Way; Luhan Yang

We need technology and an ethical framework for genome-scale engineering The Human Genome Project (“HGP-read”), nominally completed in 2004, aimed to sequence the human genome and to improve the technology, cost, and quality of DNA sequencing (1, 2). It was biologys first genome-scale project and at the time was considered controversial by some. Now, it is recognized as one of the great feats of exploration, one that has revolutionized science and medicine.


eLife | 2016

A glucose-starvation response regulates the diffusion of macromolecules

Ryan Joyner; Jeffrey H. Tang; Jonne Helenius; Elisa Dultz; Christiane Brune; Liam J. Holt; Sébastien Huet; Daniel J. Müller; Karsten Weis

The organization and biophysical properties of the cytosol implicitly govern molecular interactions within cells. However, little is known about mechanisms by which cells regulate cytosolic properties and intracellular diffusion rates. Here, we demonstrate that the intracellular environment of budding yeast undertakes a startling transition upon glucose starvation in which macromolecular mobility is dramatically restricted, reducing the movement of both chromatin in the nucleus and mRNPs in the cytoplasm. This confinement cannot be explained by an ATP decrease or the physiological drop in intracellular pH. Rather, our results suggest that the regulation of diffusional mobility is induced by a reduction in cell volume and subsequent increase in molecular crowding which severely alters the biophysical properties of the intracellular environment. A similar response can be observed in fission yeast and bacteria. This reveals a novel mechanism by which cells globally alter their properties to establish a unique homeostasis during starvation. DOI: http://dx.doi.org/10.7554/eLife.09376.001


eLife | 2014

Ancestral resurrection reveals evolutionary mechanisms of kinase plasticity

Conor J Howard; Victor Hanson-Smith; Kristopher J Kennedy; Chad J. Miller; Hua Jane Lou; Alexander D. Johnson; Benjamin E. Turk; Liam J. Holt

Protein kinases have evolved diverse specificities to enable cellular information processing. To gain insight into the mechanisms underlying kinase diversification, we studied the CMGC protein kinases using ancestral reconstruction. Within this group, the cyclin dependent kinases (CDKs) and mitogen activated protein kinases (MAPKs) require proline at the +1 position of their substrates, while Ime2 prefers arginine. The resurrected common ancestor of CDKs, MAPKs, and Ime2 could phosphorylate substrates with +1 proline or arginine, with preference for proline. This specificity changed to a strong preference for +1 arginine in the lineage leading to Ime2 via an intermediate with equal specificity for proline and arginine. Mutant analysis revealed that a variable residue within the kinase catalytic cleft, DFGx, modulates +1 specificity. Expansion of Ime2 kinase specificity by mutation of this residue did not cause dominant deleterious effects in vivo. Tolerance of cells to new specificities likely enabled the evolutionary divergence of kinases. DOI: http://dx.doi.org/10.7554/eLife.04126.001


Journal of Cell Science | 2013

The Giardia cell cycle progresses independently of the anaphase-promoting complex

Stéphane Gourguechon; Liam J. Holt; W. Zacheus Cande

Summary Most cell cycle regulation research has been conducted in model organisms representing a very small part of the eukaryotic domain. The highly divergent human pathogen Giardia intestinalis is ideal for studying the conservation of eukaryotic pathways. Although Giardia has many cell cycle regulatory components, its genome lacks all anaphase-promoting complex (APC) components. In the present study, we show that a single mitotic cyclin in Giardia is essential for progression into mitosis. Strikingly, Giardia cyclin B lacks the conserved N-terminal motif required for timely degradation mediated by the APC and ubiquitin conjugation. Expression of Giardia cyclin B in fission yeast is toxic, leading to a prophase arrest, and this toxicity is suppressed by the addition of a fission yeast degradation motif. Cyclin B is degraded during mitosis in Giardia cells, but this degradation appears to be independent of the ubiquitination pathway. Other putative APC substrates, aurora and polo-like kinases, also show no evidence of ubiquitination. This is the first example of mitosis not regulated by the APC and might reflect an evolutionary ancient form of cell cycle regulation.


Molecular and Cellular Biology | 2008

Cyclin-specific control of ribosomal DNA segregation.

Matt Sullivan; Liam J. Holt; David O. Morgan

ABSTRACT Following chromosome duplication in S phase of the cell cycle, the sister chromatids are linked by cohesin. At the onset of anaphase, separase cleaves cohesin and thereby initiates sister chromatid separation. Separase activation results from the destruction of its inhibitor, securin, which is triggered by a ubiquitin ligase called the anaphase-promoting complex (APC). Here, we show in budding yeast that securin destruction and, thus, separase activation are not sufficient for the efficient segregation of the repetitive ribosomal DNA (rDNA). We find that rDNA segregation also requires the APC-mediated destruction of the S-phase cyclin Clb5, an activator of the protein kinase Cdk1. Mutations that prevent Clb5 destruction are lethal and cause defects in rDNA segregation and DNA synthesis. These defects are distinct from the mitotic-exit defects caused by stabilization of the mitotic cyclin Clb2, emphasizing the importance of cyclin specificity in the regulation of late-mitotic events. Efficient rDNA segregation, both in mitosis and meiosis, also requires APC-dependent destruction of Dbf4, an activator of the protein kinase Cdc7. We speculate that the dephosphorylation of Clb5-specific Cdk1 substrates and Dbf4-Cdc7 substrates drives the resolution of rDNA in early anaphase. The coincident destruction of securin, Clb5, and Dbf4 coordinates bulk chromosome segregation with segregation of rDNA.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Cell-cycle regulation of formin-mediated actin cable assembly

Yansong Miao; Catherine C. L. Wong; Vito Mennella; Alphée Michelot; David A. Agard; Liam J. Holt; John R. Yates; David G. Drubin

Significance Actin filaments are protein polymers that facilitate multiple biological functions, including cell migration, vesicle trafficking, and polarity establishment in eukaryotic cells throughout the cell cycle. Mechanisms of spatial and temporal regulation of actin assembly in vivo are incompletely understood. Formin proteins nucleate cables, which are bundles of unbranched actin filaments. We developed a cell-extract system to reconstitute actin cable assembly nucleated by formins in a physiological context. Using this unique reconstitution system, we identified an actin cable parts list. We also discovered that actin cable assembly is regulated in a cell-cycle–dependent manner both in vivo and in vitro. Assembly of appropriately oriented actin cables nucleated by formin proteins is necessary for many biological processes in diverse eukaryotes. However, compared with knowledge of how nucleation of dendritic actin filament arrays by the actin-related protein-2/3 complex is regulated, the in vivo regulatory mechanisms for actin cable formation are less clear. To gain insights into mechanisms for regulating actin cable assembly, we reconstituted the assembly process in vitro by introducing microspheres functionalized with the C terminus of the budding yeast formin Bni1 into extracts prepared from yeast cells at different cell-cycle stages. EM studies showed that unbranched actin filament bundles were reconstituted successfully in the yeast extracts. Only extracts enriched in the mitotic cyclin Clb2 were competent for actin cable assembly, and cyclin-dependent kinase 1 activity was indispensible. Cyclin-dependent kinase 1 activity also was found to regulate cable assembly in vivo. Here we present evidence that formin cell-cycle regulation is conserved in vertebrates. The use of the cable-reconstitution system to test roles for the key actin-binding proteins tropomyosin, capping protein, and cofilin provided important insights into assembly regulation. Furthermore, using mass spectrometry, we identified components of the actin cables formed in yeast extracts, providing the basis for comprehensive understanding of cable assembly and regulation.

Collaboration


Dive into the Liam J. Holt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Conor J Howard

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge