Liam P. McGuire
Texas Tech University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Liam P. McGuire.
PLOS ONE | 2011
Philip D. Taylor; Stuart A. Mackenzie; Bethany G. Thurber; Anna M. Calvert; Alex Mills; Liam P. McGuire; Christopher G. Guglielmo
Many species of birds and bats undertake seasonal migrations between breeding and over-wintering sites. En-route, migrants alternate periods of flight with time spent at stopover – the time and space where individuals rest and refuel for subsequent flights. We assessed the spatial scale of movements made by migrants during stopover by using an array of automated telemetry receivers with multiple antennae to track the daily location of individuals over a geographic area ∼20×40 km. We tracked the movements of 322 individuals of seven migratory vertebrate species (5 passerines, 1 owl and 1 bat) during spring and fall migratory stopover on and adjacent to a large lake peninsula. Our results show that many individuals leaving their capture site relocate within the same landscape at some point during stopover, moving as much as 30 km distant from their site of initial capture. We show that many apparent nocturnal departures from stopover sites are not a resumption of migration in the strictest sense, but are instead relocations that represent continued stopover at a broader spatial scale.
Journal of Animal Ecology | 2012
Liam P. McGuire; Christopher G. Guglielmo; Stuart A. Mackenzie; Philip D. Taylor
1. Some bat species make long-distance latitudinal migrations between summer and winter grounds, but because of their elusive nature, few aspects of their biology are well understood. The need for migratory stopover sites to rest and refuel, such as used by birds, has been repeatedly suggested, but not previously tested empirically in bats. 2. We studied migrating silver-haired bats (Lasionycteris noctivagans) at Long Point, ON, Canada. We used digital radio-transmitters to track 30 bats using an array of five towers that effectively covered the entire region (c. 20 × 40 km). We measured stopover duration and departure direction, and documented movement patterns, foraging activity and roost sites. We measured body composition on arrival using quantitative magnetic resonance and simulated long-distance migration using observed body composition to predict migration range and rate. 3. Migration occurred in two waves (late August and mid-September). Most bats stayed 1-2 days, although two remained >2 weeks. One third of the bats foraged while at the site, many foraging opportunistically on nights when rain precluded continued migration. Bats roosted in a variety of tree species and manmade structures in natural and developed areas. Half of the bats departed across Lake Erie (minimum crossing distance c. 38 km) while half departed along the shoreline. 4. Simulations predicted a migration rate of c. 250-275 km per day and suggest that all but one of the bats in our study carried sufficient fuel stores to reach the putative wintering area (estimated distance 1500 km) without further refuelling. 5. Our results suggest that migrating bats stopover for sanctuary or short-term rest as opposed to extended rest and refuelling as in many songbirds. Daily torpor could reduce energy costs when not in flight, minimizing the need for extended stopovers and allowing bats to potentially complete their migration at a fraction of the time and energy cost of similar sized birds.
Biology Letters | 2011
Yvonne Dzal; Liam P. McGuire; Nina Veselka; M. Brock Fenton
Since its discovery in the winter of 2005–2006, white-nose syndrome (WNS) has killed over one million little brown bats (Myotis lucifugus) in the American northeast. Although many studies have reported die-offs of bats at winter hibernacula, it is important to understand how bat mortality linked to WNS at winter hibernacula affects bat activity levels in their summer ranges. In the summer (May–August) of 2007, 2008 and 2009, we recorded echolocation calls to determine bat activity at sites along the Hudson River, NY (within approx. 100 km of where WNS was first reported). We documented a 78 per cent decline in the summer activity of M. lucifugus, coinciding with the arrival and spread of WNS. We suggest that mortality of M. lucifugus in winter hibernacula is reflected by reduced levels of activity in the summer and that WNS affects the entire bat population of an area, and not only individual hibernacula.
The Journal of Experimental Biology | 2013
Liam P. McGuire; M. B. Fenton; Christopher G. Guglielmo
SUMMARY Many species of bats migrate long distances, but the physiological challenges of migration are poorly understood. We tested the hypothesis that migration is physiologically demanding for bats by examining migration-related phenotypic flexibility. Both bats and birds are endothermic, flying vertebrates; therefore, we predicted that migration would result in similar physiological trade-offs. We compared hoary bats (Lasiurus cinereus) during spring migration and summer non-migratory periods, comparing our results with previous observations of birds. Migrating bats had reduced digestive organs, enlarged exercise organs, and fat stores had higher proportions of polyunsaturated fatty acids (PUFAs). These results are consistent with previous studies of migrating birds; however, we also found sex differences not typically associated with bird migration. Migrating female hoary bats increased the relative size of fat stores by reducing lean body components, while males maintained the same relative amount of fat in both seasons. The ratio of n-6 to n-3 PUFA in flight muscle membrane increased in migrating males and decreased in migrating females, consistent with males using torpor more frequently than females during spring migration. Enlarged exercise organs, reduced digestive organs and changes in adipose tissue composition reflect the elevated energetic demands of migration. Sex-specific patterns of fat storage and muscle membrane composition likely reflect challenges faced by females that migrate while pregnant. Our results provide some of the first insights into the physiological demands of bat migration and highlight key differences between bats and birds.
Biological Reviews | 2013
Liam P. McGuire; W. Alice Boyle
Altitudinal migrations are common in all major vertebrate and some invertebrate lineages. Such migrations have important implications for the basic and applied ecology of animals making these movements. The idea that bats make altitudinal migrations has been suggested for nearly a century. However, studies documenting the existence and causes of altitudinal bat migrations are scarce, and are frequently published in the ‘grey’ literature. For the first time, we comprehensively review the evidence supporting the existence of altitudinal bat migrations worldwide, describe basic patterns of migration in temperate and tropical regions, and articulate and propose tests of hypotheses potentially explaining these migrations. We compiled a list of 50 studies indicative of altitudinal bat migration in 61 species (five families) from 21 countries (four continents). The temporal and spatial patterns of these migrations grouped biogeographically. Temperate bats generally exhibit sex‐biased migrations with females inhabiting lower elevations than males during reproductive periods. Although there is less information on tropical bat migration, few studies report sex‐biased migration. We compiled hypotheses proposed in the bat and (more extensive) avian literature to provide a list of hypotheses potentially explaining altitudinal bat migrations. These hypotheses rely upon temporal availability of (and competition for) food resources, spatial distribution of geomorphological features suitable for hibernation, sex‐related differences in the use of torpor, mating opportunities, and climatic factors that impose direct physiological challenges to survival or that restrict the ability to forage. A more thorough description of the migration patterns of most species will be required to distinguish effectively among these hypotheses. We identify research avenues that would broaden our understanding of bat migration patterns and provide critical information required for effective conservation.
Journal of Mammalogy | 2010
Liam P. McGuire; Christopher G. Guglielmo
Abstract Quantitative magnetic resonance (QMR) is a new technology for measuring body composition of live, nonanesthetized animals (fat mass, lean mass, and total body water) in 4 min or less. We conducted a validation study to compare QMR body composition analysis of 3 species of bats (mass range 5.77–31.30 g) with traditional chemical extraction. In addition to scans of live animals, we tested the effectiveness of QMR for salvaged specimens (bats killed by wind turbines) and the effects of carcass temperature. Our analysis indicates that QMR body composition analysis is effective for live and salvaged animals. Frozen carcasses could not be analyzed, but results were not dramatically affected for specimens at 4°C and 37°C. QMR analysis eliminates the need to euthanize animals to determine body composition precisely, allows rapid and efficient data collection, and makes it possible to follow individuals longitudinally through time.
Canadian Journal of Zoology | 2009
Liam P. McGuire; M. B. Fenton; Christopher G. Guglielmo
At temperate latitudes insectivorous bats face substantial nutritional demands prior to hibernation. As temperature decreases and availability of insect prey declines, bats must deposit nutrient stores for hibernation. The use of torpor allows bats to limit energy expenditures resulting in a net energy gain despite decreased energy intake. However, subadult bats have lower initial fat stores than adults and may have greater difficulty depositing sufficient nutrient stores to survive the winter. We used plasma metabolite analysis to determine the fueling performance of little brown bats (Myotis lucifugus (LeConte, 1831)) during swarming to see if subadults compensated for the increased challenges by increased feeding throughout the swarming period. During the period of our study (August and September), adult bats gained mass, while subadults lost mass. There was, however, no difference in nutrient intake of the age groups as indicated by plasma metabolite concentrations. The number of bats using torpor whi...
Physiological and Biochemical Zoology | 2009
Liam P. McGuire; M. Brock Fenton; Paul A. Faure; Christopher G. Guglielmo
Insectivorous bats regularly experience dramatic and sometimes rapid changes in nutrient stores, yet our ability to study these changes has been limited by available techniques. Plasma metabolite analysis has proven effective for studying individual rates of mass change in birds but has not been validated for other taxa. We tested the effectiveness of plasma metabolite analysis by conducting a study with captive big brown bats (Eptesicus fuscus) and little brown bats (Myotis lucifugus) in the field. In the lab, we varied food availability to induce various rates of mass change. As predicted, individual rate of mass change was positively correlated with plasma triglyceride concentration, but there was no relationship with plasma β‐hydroxybutyrate concentration, whereas such a relationship has been found in birds. In the field, we collected blood samples from postlactating females as they emerged in the evening (fasted) and when they returned from feeding in the morning. Plasma triglyceride concentration was greater in fed bats than fasted bats, and the increase was less when rain limited foraging. Contrary to predictions, β‐hydroxybutyrate concentration was also greater in fed bats than fasted bats. Analysis of plasma triglyceride concentration provides a technique for assessing individual feeding state and rate of mass change of bats and will facilitate further study of bat nutritional ecology and energetics.
PLOS ONE | 2013
Allyson K. Menzies; Mary E. Timonin; Liam P. McGuire; Craig K. R. Willis
Animal personality or temperament refers to individual differences in behaviour that are repeatable over time and across contexts. Personality has been linked to life-history traits, energetic traits and fitness, with implications for the evolution of behaviour. Personality has been quantified for a range of taxa (e.g., fish, songbirds, small mammals) but, so far, there has been little work on personality in bats, despite their diversity and potential as a model taxon for comparative studies. We used a novel environment test to quantify personality in little brown bats (Myotis lucifugus) and assess the short-term repeatability of a range of behaviours. We tested the hypothesis that development influences values of personality traits and predicted that trait values associated with activity would increase between newly volant, pre-weaning young-of-the-year (YOY) and more mature, self-sufficient YOY. We identified personality dimensions that were consistent with past studies of other taxa and found that these traits were repeatable over a 24-hour period. Consistent with our prediction, older YOY captured at a fall swarming site prior to hibernation had higher activity scores than younger YOY bats captured at a maternity colony, suggesting that personality traits vary as development progresses in YOY bats. Thus, we found evidence of short-term consistency of personality within individuals but with the potential for temporal flexibility of traits, depending on age.
Acta Chiropterologica | 2011
M. Brock Fenton; Mark D. Skowronski; Liam P. McGuire; Paul A. Faure
The echolocation calls of bats may contain a single acoustic element (the fundamental frequency or a harmonic) or multiple acoustic elements that may (or may not) include the fundamental element. We hypothesize that the detection of harmonics is affected by three factors: 1) species, 2) situation, and 3) recording quality. To test our hypotheses, we recorded and analyzed approximately 2,300 calls from 17 species and 1 subspecies in 6 families of bats using a 1-channel and 4-channel microphone array. The percentage of calls with multiple acoustic elements varied from 0 to 83% across species. Furthermore, recordings from a 4-channel microphone array (1 m tetrahedron arrangement) revealed that the percent of calls with multiple acoustic elements varied across channels by up to 50%, indicating the effect of bat position relative to the microphone. In some species, presence of multiple acoustic elements was predicted by call energy: calls with sufficient energy (threshold varied by species) had multiple acoustic elements above the noise floor of the recording system. In the remaining species that produced calls with multiple acoustic elements, we found two clusters of calls. In one cluster, the presence of multiple acoustic elements was predicted by received call energy. In the 2nd cluster, call energy was lower, and almost all calls included multiple acoustic elements. The detection of harmonics independent of recorded energy suggests the intriguing possibility that harmonics are used differently in these species. Finally, to test the effect of situation, we recorded the echolocation calls of big brown bats (Eptesicus fuscus) flying in three settings: an anechoic flight room, during roost emergence, and foraging in an open area. Call energy shifted to lower frequencies and fewer acoustic elements as the recording distance and the volume of the flight environment increased (i.e., as clutter decreased). Comparing flight room with foraging calls revealed that the second harmonic of open air foraging signals decreased by about 30 dB (relative to the fundamental). Overall, our results show that detection of echolocation signals with harmonics varied significantly across species. We also demonstrate that relative harmonic intensity varies according to the flight situation within a species, and when combined with the effects of call directionality and relative position of bat and microphone, these factors influence harmonic detection in echolocation recordings.