Lian F. Thomas
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lian F. Thomas.
BMC Veterinary Research | 2013
Lian F. Thomas; William A. de Glanville; Elizabeth A.J. Cook; Eric M. Fèvre
BackgroundIn many parts of the developing world, pigs are kept under low-input systems where they roam freely to scavenge food. These systems allow poor farmers the opportunity to enter into livestock keeping without large capital investments. This, combined with a growing demand for pork, especially in urban areas, has led to an increase in the number of small-holder farmers keeping free range pigs as a commercial enterprise. Despite the benefits which pig production can bring to a household, keeping pigs under a free range system increases the risk of the pig acquiring diseases, either production-limiting or zoonotic in nature. This study used Global Positioning System (GPS) technology to track free range domestic pigs in rural western Kenya, in order to understand their movement patterns and interactions with elements of the peri-domestic environment.ResultsWe found that these pigs travel an average of 4,340 m in a 12 hr period and had a mean home range of 10,343 m2 (range 2,937–32,759 m2) within which the core utilisation distribution was found to be 964 m2 (range 246–3,289 m2) with pigs spending on average 47% of their time outside their homestead of origin.ConclusionThese are the first data available on the home range of domestic pigs kept under a free range system: the data show that pigs in these systems spend much of their time scavenging outside their homesteads, suggesting that these pigs may be exposed to infectious agents over a wide area. Control policies for diseases such as Taenia solium, Trypanosomiasis, Trichinellosis, Toxoplasmosis or African Swine Fever therefore require a community-wide focus and pig farmers require education on the inherent risks of keeping pigs under a free range system. The work presented here will enable future research to incorporate movement data into studies of disease transmission, for example for the understanding of transmission of African Swine Fever between individuals, or in relation to the life-cycle of parasites including Taenia solium.
Parasites & Vectors | 2014
Anna L. Okello; Amanda Ash; Chattouphone Keokhamphet; Emma C. Hobbs; Boualam Khamlome; Pierre Dorny; Lian F. Thomas; John Allen
BackgroundThe Taenia solium cysticercosis-taeniasis complex is a Neglected Tropical Disease of significant public health importance in many impoverished communities worldwide. The parasite is suspected to be endemic in Lao PDR as a result of widespread risk factors including open human defecation, free ranging pigs and weak systems for meat inspection and carcass condemnation. Reported prevalences of human taeniasis throughout the country have ranged from 0-14%, although few of these have definitively diagnosed T. solium, grossly indistinguishable from Taenia saginata (beef tapeworm) and Taenia asiatica. This short communication details the suspicion of a hyper endemic “hotspot” of T. solium in a remote Tai Dam village in northern Lao PDR.FindingsInitial antibody serosurveillance of four provinces in Lao PDR in 2011 indicated human taeniasis and cysticercosis prevalences of 46.7% and 66.7% respectively, in the village of Om Phalong in the north of the country. Subsequent copro-antigen ELISA on 92 human faecal samples from this same village, representing a total 27.9% of the target community, indicated a taeniasis prevalence of 26.1% (95% CI?=?18.2-35.9). Subsequent PCR and sequencing of samples (n?=?5) all identified as T. solium; the other human tapeworms T. saginata and T. asiatica were not detected in any of the samples genotyped.ConclusionThis is potentially one of the highest documented prevalences of T. solium taeniasis to date in Lao PDR, if not the Southeast Asia region. This result raises suspicion that other “hotspots” of T. solium hyper endemicity may exist in the region, particularly in communities where the consumption of raw pork is commonplace as a result of cultural practices.
BMC Veterinary Research | 2012
Eric E Eshitera; Sm Githigia; Philip Kitala; Lian F. Thomas; Eric M. Fèvre; Leslie Js Harrison; Evalyn W Mwihia; Richard O Otieno; Fred Ojiambo; N Maingi
BackgroundTaenia solium is an important zoonosis in many developing countries. Cysticercosis poses a serious public health risk and leads to economic losses to the pig production industry. Due to scarcity of data on the epidemiology of porcine cysticercosis in Kenya, the present study was conducted to determine the prevalence and risk factors for porcine cysticercosis within Homa Bay district. A cross-sectional survey was carried out in 2010, and a total of 392 pigs were recruited in a household survey, with all being tested by ante-mortem lingual palpation (together with questionnaire data on pig production, occurrence and transmission of porcine cysticercosis, risk factors and awareness of porcine cysticercosis collected from the households from which pigs were sampled). Sufficient serum was collected from 232 of the pigs to be tested for the presence of circulating parasite antigen using a monoclonal antibody-based sandwich enzyme-linked immunosorbent assay (Ag-ELISA).ResultsSeventy six pigs were found positive by the Ag-ELISA (32.8%, 95% C.I. 26.8-39.2%), while by tongue inspection cysticerci were detected in 22/ 392 pigs (5.6% 95% C.I. 3.6-8.4%).The most important risk factor for porcine cysticercosis in the Homa Bay area was for pigs to belong to a farm where latrine use by members of the household was not evident (OR = 1.9, 95% CI = 1.13–2.37).ConclusionThe present findings indicate that porcine cysticercosis is endemic in Homa Bay District, and that latrine provision, in conjunction with free-range pig keeping contributes significantly to porcine cysticercosis transmission.
BMC Veterinary Research | 2016
Lian F. Thomas; Richard P. Bishop; Cynthia Onzere; Michael T. McIntosh; Karissa A. Lemire; William A. de Glanville; E. Anne J. Cook; Eric M. Fèvre
BackgroundAfrican swine fever (ASF), caused by African swine fever virus (ASFV), is a severe haemorrhagic disease of pigs, outbreaks of which can have a devastating impact upon commercial and small-holder pig production. Pig production in western Kenya is characterised by low-input, free-range systems practised by poor farmers keeping between two and ten pigs. These farmers are particularly vulnerable to the catastrophic loss of livestock assets experienced in an ASF outbreak. This study wished to expand our understanding of ASFV epidemiology during a period when no outbreaks were reported.ResultsTwo hundred and seventy six whole blood samples were analysed using two independent conventional and real time PCR assays to detect ASFV. Despite no recorded outbreak of clinical ASF during this time, virus was detected in 90/277 samples analysed by conventional PCR and 142/209 samples analysed by qPCR. Genotyping of a sub-set of these samples indicated that the viruses associated with the positive samples were classified within genotype IX and that these strains were therefore genetically similar to the virus associated with the 2006/2007 ASF outbreaks in Kenya.ConclusionThe detection of ASFV viral DNA in a relatively high number of pigs delivered for slaughter during a period with no reported outbreaks provides support for two hypotheses, which are not mutually exclusive: (1) that virus prevalence may be over-estimated by slaughter-slab sampling, relative to that prevailing in the wider pig population; (2) that sub-clinical, chronically infected or recovered pigs may be responsible for persistence of the virus in endemic areas.
Acta Tropica | 2016
Anna L. Okello; Lian F. Thomas; Phouth Inthavong; Amanda Ash; Boualam Khamlome; C. Keokamphet; K. Newberry; Charles G. Gauci; Sarah Gabriël; Pierre Dorny; R.C.A. Thompson; Marshall W. Lightowlers; John Allen
Following confirmation that a remote village of approximately 300 inhabitants in northern Lao PDR was hyperendemic for the Neglected Tropical Disease Taenia solium, a pilot human-porcine therapeutic control intervention was implemented between October 2013 and November 2014. Mass drug administration with a three day albendazole 400mg protocol was offered to all eligible humans in October 2013 and March 2014. At these times, and again in October 2014, eligible village pigs received the anti-cysticercosis TSOL18 vaccination and an oral dose of oxfendazole anthelmintic at 30mg/kg, both repeated one month later. Community and individual human taeniasis prevalences were estimated via copro-antigen ELISA of volunteered human faecal samples prior to October 2013, and again in January 2015, in order to examine the short term impact of the intervention.
PLOS Neglected Tropical Diseases | 2015
Nicola A. Wardrop; Lian F. Thomas; Peter M. Atkinson; William A. de Glanville; Elizabeth A.J. Cook; C. Njeri Wamae; Sarah Gabriël; Pierre Dorny; Leslie J.S. Harrison; Eric M. Fèvre
Taenia spp. infections, particularly cysticercosis, cause considerable health impacts in endemic countries. Despite previous evidence of spatial clustering in cysticercosis and the role of environmental factors (e.g. temperature and humidity) in the survival of eggs, little research has explored these aspects of Taenia spp. epidemiology. In addition, there are significant gaps in our understanding of risk factors for infection in humans and pigs. This study aimed to assess the influence of socio-economic, behavioural and environmental variables on human and porcine cysticercosis. A cross-sectional survey for human taeniasis (T. solium and T. saginata), human cysticercosis (T. solium) and pig cysticercosis (T. solium) in 416 households in western Kenya was carried out. These data were linked to questionnaire responses and environmental datasets. Multi-level regression was used to examine the relationships between covariates and human and porcine cysticercosis. The HP10 Ag-ELISA sero-prevalence (suggestive of cysticercosis) was 6.6% for humans (95% CI 5.6%–7.7%), and 17.2% for pigs (95% CI 10.2%–26.4%). Human taeniasis prevalence, based on direct microscopic observation of Taenia spp. eggs (i.e. via microscopy results only) was 0.2% (95% CI 0.05%–0.5%). Presence of Taenia spp. antigen in both humans and pigs was significantly associated with a range of factors, including positive correlations with land cover. The presence of HP10 antigen in humans was correlated (non-linearly) with the proportion of land within a 1 km buffer that was flooding agricultural land and grassland (odds ratio [OR] = 1.09 and 0.998; p = 0.03 and 0.03 for the linear and quadratic terms respectively), gender (OR = 0.58 for males compared to females, p = 0.02), level of education (OR = 0.62 for primary level education versus no formal education, p = 0.09), use of well water for drinking (OR = 2.76 for those who use well water versus those who do not, p = 0.02) and precipitation (OR = 0.998, p = 0.02). Presence of Taenia spp. antigen in pigs was significantly correlated with gender and breeding status of the pig (OR = 10.35 for breeding sows compared to boars, p = 0.01), and the proportion of land within a 1 km buffer that was flooding agricultural land and grassland (OR = 1.04, p = 0.004). These results highlight the role of multiple socio-economic, behavioural and environmental factors in Taenia spp. transmission patterns. Environmental contamination with Taenia spp. eggs is a key issue, with landscape factors influencing presence of Taenia spp. antigens in both pigs and humans.
American Journal of Tropical Medicine and Hygiene | 2015
Gregory C. Gray; Benjamin D. Anderson; A. Desiree LaBeaud; Jean-Michel Heraud; Eric M. Fèvre; Soa Fy Andriamandimby; Elizabeth A.J. Cook; Saidi Dahir; William A. de Glanville; Gary L. Heil; Salah Uddin Khan; Samuel Muiruri; Marie Marie Olive; Lian F. Thomas; Hunter R. Merrill; Mary M. Merrill; Juergen A. Richt
In this cross-sectional seroepidemiological study we sought to examine the evidence for circulation of Rift Valley fever virus (RVFV) among herders in Madagascar and Kenya. From July 2010 to June 2012, we enrolled 459 herders and 98 controls (without ruminant exposures) and studied their sera (immunoglobulin G [IgG] and IgM through enzyme-linked immunosorbent assay [ELISA] and plaque reduction neutralization test [PRNT] assays) for evidence of previous RVFV infection. Overall, 59 (12.9%) of 459 herders and 7 (7.1%) of the 98 controls were positive by the IgG ELISA assay. Of the 59 ELISA-positive herders, 23 (38.9%) were confirmed by the PRNT assay (21 from eastern Kenya). Two of the 21 PRNT-positive study subjects also had elevated IgM antibodies against RVFV suggesting recent infection. Multivariate modeling in this study revealed that being seminomadic (odds ratio [OR] = 6.4, 95% confidence interval [CI] = 2.1–15.4) was most strongly associated with antibodies against RVFV. Although we cannot know when these infections occurred, it seems likely that some interepidemic RVFV infections are occurring among herders. As there are disincentives regarding reporting RVFV outbreaks in livestock or wildlife, it may be prudent to conduct periodic, limited, active seroepidemiological surveillance for RVFV infections in herders, especially in eastern Kenya.
PLOS Neglected Tropical Diseases | 2017
William A. de Glanville; Raquel Conde-Álvarez; Ignacio Moriyón; J. Njeru; Ramón Díaz; Elizabeth A.J. Cook; Matilda Morin; Barend M. deC. Bronsvoort; Lian F. Thomas; Samuel Kariuki; Eric M. Fèvre
Human brucellosis is considered to be an important but typically under-diagnosed cause of febrile illness in many low and middle-income countries. In Kenya, and throughout East Africa, laboratory diagnosis for the disease is based primarily on the febrile antigen Brucella agglutination test (FBAT), yet few studies of the diagnostic accuracy of this test exist. Assessment of the performance of the FBAT is essential for its appropriate clinical use, as well as for evaluating surveillance data reported by public health systems. To assess FBAT performance, we collected sera from people with symptoms compatible with brucellosis attending two health facilities in Busia County, Kenya. Sera were tested using the FBAT and results compared with those from the Rose Bengal Test (RBT), an assay with well-known performance characteristics. Positives on either test were confirmed using the classical serum agglutination test (SAT)-Coombs test combination and a rapid IgM/IgG lateral flow immunochromatography assay (LFA). A questionnaire focussing on known risk factors for exposure to Brucella spp. was also conducted, and relationships with FBAT positivity examined using logistic regression. Out of 825 recruited individuals, 162 (19.6%) were classified as positive using the FBAT. In contrast, only eight (1.0%) were positive using the RBT. Of the 162 FBAT positives, one (0.62%) had an atypical agglutination in SAT and three (1.9%) showed low Coombs titres. Out of 148 FBAT positive individuals tested using the LFA, five (3.4%) were IgM positive and none were IgG positive. Poor or no correlation was observed between FBAT results and most established risk factors for Brucella infection. We observed substantial disagreement between the FBAT and a number of well-known serological tests, with the majority of reactive FBAT results appearing to be false positives. Poor FBAT specificity, combined with a lack of confirmatory testing, strongly suggests overdiagnosis of brucellosis is common in this low prevalence setting. This is expected to have important economic impacts on affected patients subjected to the long and likely unnecessary courses of multiple antibiotics required for treatment of the disease.
Occupational and Environmental Medicine | 2017
Elizabeth Anne Jessie Cook; William A. de Glanville; Lian F. Thomas; Samuel Kariuki; Barend Mark de Clare Bronsvoort; Eric M. Fèvre
Objectives Leptospirosis has been documented in slaughterhouse workers around the world. Risk factors include smoking and drinking at work, and performing tasks such as cleaning offal. This paper examined risk factors for leptospirosis seropositivity in slaughterhouse workers in western Kenya. Methods The study was conducted between May 2011 and October 2012. Questionnaires were used to collect information from workers on demographic data, health and hygiene practices in the slaughterhouse. A commercial ELISA detected antibodies to Leptospira spp. in serum samples and multilevel logistic regression analysis identified factors associated with leptospirosis seropositivity. Results A total of 737 workers from 142 slaughterhouses were recruited. The seroprevalence of antibodies to Leptospira spp. was 13.4% (95% CI 11.1% to 16.1%). Risk factors included: having wounds (OR 3.1; 95% CI 1.5 to 6.1); smoking (OR 1.8; 95% CI 1.1 to 2.9); eating at work (OR 2.1; 95% CI 1.2 to 3.6); cleaning the offal (OR 5.1; 95% CI 1.8 to 15.0); and having a borehole for personal water use (OR 2.3; 95% CI 1.1 to 4.7). At the slaughterhouse level, risk factors included having a roof (OR 2.6; 95% CI 1.2 to 5.6) and drawing water from a well (OR 2.2; 95% CI 1.2 to 4.0). Protective factors included working in slaughterhouses where antemortem inspection was conducted (OR 0.6; 95% CI 0.4 to 1.0) and where workers wore protective aprons (OR 0.4; 95% CI 0.2 to 0.7). Conclusions This is the first report of leptospirosis seropositivity in slaughterhouse workers in Kenya. Potential risk factors were identified and this information can be used to educate workers regarding their disease risks and ways to prevent or reduce transmission.
PLOS Neglected Tropical Diseases | 2016
Nicola A. Wardrop; Lian F. Thomas; Elizabeth A.J. Cook; William A. de Glanville; Peter M. Atkinson; Claire N. Wamae; Eric M. Fèvre
Evidence suggests that the intracellular bacterial pathogen Coxiella burnetii (which causes Q fever) is widespread, with a near global distribution. While there has been increasing attention to Q fever epidemiology in high-income settings, a recent systematic review highlighted significant gaps in our understanding of the prevalence, spatial distribution and risk factors for Q fever infection across Africa. This research aimed to provide a One Health assessment of Q fever epidemiology in parts of Western and Nyanza Provinces, Western Kenya, in cattle and humans. A cross-sectional survey was conducted: serum samples from 2049 humans and 955 cattle in 416 homesteads were analysed for C. burnetii antibodies. Questionnaires covering demographic, socio-economic and husbandry information were also administered. These data were linked to environmental datasets based on geographical locations (e.g., land cover). Correlation and spatial-cross correlation analyses were applied to assess the potential link between cattle and human seroprevalence. Multilevel regression analysis was used to assess the relationships between a range of socio-economic, demographic and environmental factors and sero-positivity in both humans and animals. The overall sero-prevalence of C. burnetii was 2.5% in humans and 10.5% in cattle, but we found no evidence of correlation between cattle and human seroprevalence either within households, or when incorporating spatial proximity to other households in the survey. Multilevel modelling indicated the importance of several factors for exposure to the organism. Cattle obtained from market (as opposed to those bred in their homestead) and those residing in areas with lower precipitation levels had the highest sero-prevalence. For humans, the youngest age group had the highest odds of seropositivity, variations were observed between ethnic groups, and frequent livestock contact (specifically grazing and dealing with abortion material) was also a risk factor. These results illustrate endemicity of C. burnetii in western Kenya, although prevalence is relatively low. The analysis indicates that while environmental factors may play a role in cattle exposure patterns, human exposure patterns are likely to be driven more strongly by livestock contacts. The implication of livestock markets in cattle exposure risks suggests these may be a suitable target for interventions.