Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lianbo Yu is active.

Publication


Featured researches published by Lianbo Yu.


PLOS ONE | 2008

Detection of microRNA Expression in Human Peripheral Blood Microvesicles

Melissa Piper Hunter; Noura Ismail; Xiaoli Zhang; Baltazar D. Aguda; Eun Joo Lee; Lianbo Yu; Tao Xiao; Jeffrey Schafer; Mei-Ling Ting Lee; Thomas D. Schmittgen; S. Patrick Nana-Sinkam; David Jarjoura; Clay B. Marsh

Background MicroRNAs (miRNA) are small non-coding RNAs that regulate translation of mRNA and protein. Loss or enhanced expression of miRNAs is associated with several diseases, including cancer. However, the identification of circulating miRNA in healthy donors is not well characterized. Microvesicles, also known as exosomes or microparticles, circulate in the peripheral blood and can stimulate cellular signaling. In this study, we hypothesized that under normal healthy conditions, microvesicles contain miRNAs, contributing to biological homeostasis. Methodology/Principal Findings Microvesicles were isolated from the plasma of normal healthy individuals. RNA was isolated from both the microvesicles and matched mononuclear cells and profiled for 420 known mature miRNAs by real-time PCR. Hierarchical clustering of the data sets indicated significant differences in miRNA expression between peripheral blood mononuclear cells (PBMC) and plasma microvesicles. We observed 71 miRNAs co-expressed between microvesicles and PBMC. Notably, we found 33 and 4 significantly differentially expressed miRNAs in the plasma microvesicles and mononuclear cells, respectively. Prediction of the gene targets and associated biological pathways regulated by the detected miRNAs was performed. The majority of the miRNAs expressed in the microvesicles from the blood were predicted to regulate cellular differentiation of blood cells and metabolic pathways. Interestingly, a select few miRNAs were also predicted to be important modulators of immune function. Conclusions This study is the first to identify and define miRNA expression in circulating plasma microvesicles of normal subjects. The data generated from this study provides a basis for future studies to determine the predictive role of peripheral blood miRNA signatures in human disease and will enable the definition of the biological processes regulated by these miRNA.


Journal of Clinical Investigation | 2012

Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver

Shu-hao Hsu; Bo Wang; Janaiah Kota; Jianhua Yu; Stefan Costinean; Huban Kutay; Lianbo Yu; Shoumei Bai; Krista La Perle; Raghu R. Chivukula; Hsiaoyin Mao; Min Wei; K. Reed Clark; Michael A. Caligiuri; Samson T. Jacob; Joshua T. Mendell; Kalpana Ghoshal

miR-122, an abundant liver-specific microRNA (miRNA), regulates cholesterol metabolism and promotes hepatitis C virus (HCV) replication. Reduced miR-122 expression in hepatocellular carcinoma (HCC) correlates with metastasis and poor prognosis. Nevertheless, the consequences of sustained loss of function of miR-122 in vivo have not been determined. Here, we demonstrate that deletion of mouse Mir122 resulted in hepatosteatosis, hepatitis, and the development of tumors resembling HCC. These pathologic manifestations were associated with hyperactivity of oncogenic pathways and hepatic infiltration of inflammatory cells that produce pro-tumorigenic cytokines, including IL-6 and TNF. Moreover, delivery of miR-122 to a MYC-driven mouse model of HCC strongly inhibited tumorigenesis, further supporting the tumor suppressor activity of this miRNA. These findings reveal critical functions for miR-122 in the maintenance of liver homeostasis and have important therapeutic implications, including the potential utility of miR-122 delivery for selected patients with HCC and the need for careful monitoring of patients receiving miR-122 inhibition therapy for HCV.


Biochemical and Biophysical Research Communications | 2008

MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines

Melissa Crawford; E. Brawner; Kara Batte; Lianbo Yu; Melissa G. Hunter; Gregory A. Otterson; Gerard J. Nuovo; Clay B. Marsh; Serge P. Nana-Sinkam

Crk is a member of a family of adaptor proteins that are involved in intracellular signal pathways altering cell adhesion, proliferation, and migration. Increased expression of Crk has been described in lung cancer and associated with increased tumor invasiveness. MicroRNAs (miRNAs) are a family of small non-coding RNAs (approximately 21-25 nt long) that are capable of targeting genes for either degradation of mRNA or inhibition of translation. Crk is a predicted putative target gene for miR-126. Over-expression of miR126 in a lung cancer cell line resulted in a decrease in Crk protein without any alteration in the associated mRNA. These lung cancer cells exhibit a decrease in adhesion, migration, and invasion. Decreased cancer cell invasion was also evident following targeted knockdown of Crk. MiR-126 alters lung cancer cell phenotype by inhibiting adhesion, migration, and invasion and the effects on invasion may be partially mediated through Crk regulation.


Blood | 2012

miR-155 regulates IFN-γ production in natural killer cells

Rossana Trotta; Li Chen; David Ciarlariello; Srirama Josyula; Charlene Mao; Stefan Costinean; Lianbo Yu; Jonathan P. Butchar; Susheela Tridandapani; Carlo M. Croce; Michael A. Caligiuri

MicroRNAs (miRs) are small, noncoding RNA molecules with important regulatory functions whose role in regulating natural killer (NK) cell biology is not well defined. Here, we show that miR-155 is synergistically induced in primary human NK cells after costimulation with IL-12 and IL-18, or with IL-12 and CD16 clustering. Over-expression of miR-155 enhanced induction of IFN-γ by IL-12 and IL-18 or CD16 stimulation, whereas knockdown of miR-155 or its disruption suppressed IFN-γ induction in monokine and/or CD16-stimulated NK cells. These effects on the regulation of NK cell IFN-γ expression were found to be mediated at least in part via miR-155s direct effects on the inositol phosphatase SHIP1. Consistent with this, we observed that modulation of miR-155 overrides IL-12 and IL-18-mediated regulation of SHIP1 expression in NK cells. Collectively, our data indicate that miR-155 expression is regulated by stimuli that strongly induce IFN-γ in NK cells such as IL-12, IL-18, and CD16 activation, and that miR-155 functions as a positive regulator of IFN-γ production in human NK cells, at least in part via down-regulating SHIP1. These findings may have clinical relevance for targeting miR-155 in neoplastic disease.


Blood | 2011

Silencing of the inhibitor of DNA binding protein 4 (ID4) contributes to the pathogenesis of mouse and human CLL

Shih Shih Chen; Rainer Claus; David M. Lucas; Lianbo Yu; Jiang Qian; Amy S. Ruppert; Derek A. West; Katie Williams; Amy J. Johnson; Fred Sablitzky; Christoph Plass; John C. Byrd

Inhibitor of DNA binding protein 4 (ID4) is a member of the dominant-negative basic helix-loop-helix transcription factor family that lacks DNA binding activity and has tumor suppressor function. ID4 promoter methylation has been reported in acute myeloid leukemia and chronic lymphocytic leukemia (CLL), although the expression, function, and clinical relevance of this gene have not been characterized in either disease. We demonstrate that the promoter of ID4 is consistently methylated to various degrees in CLL cells, and increased promoter methylation in a univariable analysis correlates with shortened patient survival. However, ID4 mRNA and protein expression is uniformly silenced in CLL cells irrespective of the degree of promoter methylation. The crossing of ID4(+/-) mice with Eμ-TCL1 mice triggers a more aggressive murine CLL as measured by lymphocyte count and inferior survival. Hemizygous loss of ID4 in nontransformed TCL1-positive B cells enhances cell proliferation triggered by CpG oligonucleotides and decreases sensitivity to dexamethasone-mediated apoptosis. Collectively, this study confirms the importance of the silencing of ID4 in murine and human CLL pathogenesis.


Blood | 2015

Characterization of CLL exosomes reveals a distinct microRNA signature and enhanced secretion by activation of BCR signaling

Yuh-Ying Yeh; Hatice Gulcin Ozer; Amy Lehman; Kami Maddocks; Lianbo Yu; Amy J. Johnson; John C. Byrd

Multiple studies show that chronic lymphocytic leukemia (CLL) cells are heavily dependent on their microenvironment for survival. Communication between CLL cells and the microenvironment is mediated through direct cell contact, soluble factors, and extracellular vesicles. Exosomes are small particles enclosed with lipids, proteins, and small RNAs that can convey biological materials to surrounding cells. Our data herein demonstrate that CLL cells release significant amounts of exosomes in plasma that exhibit abundant CD37, CD9, and CD63 expression. Our work also pinpoints the regulation of B-cell receptor (BCR) signaling in the release of CLL exosomes: BCR activation by α-immunoglobulin (Ig)M induces exosome secretion, whereas BCR inactivation via ibrutinib impedes α-IgM-stimulated exosome release. Moreover, analysis of serial plasma samples collected from CLL patients on an ibrutinib clinical trial revealed that exosome plasma concentration was significantly decreased following ibrutinib therapy. Furthermore, microRNA (miR) profiling of plasma-derived exosomes identified a distinct exosome microRNA signature, including miR-29 family, miR-150, miR-155, and miR-223 that have been associated with CLL disease. Interestingly, expression of exosome miR-150 and miR-155 increases with BCR activation. In all, this study successfully characterized CLL exosomes, demonstrated the control of BCR signaling in the release of CLL exosomes, and uncovered a disease-relevant exosome microRNA profile.


Clinical Cancer Research | 2011

Chondroitinase ABC I-Mediated Enhancement of Oncolytic Virus Spread and Antitumor Efficacy

Nina Dmitrieva; Lianbo Yu; Mariano S. Viapiano; Timothy P. Cripe; E. Antonio Chiocca; Joseph C. Glorioso; Balveen Kaur

Purpose: The inhibitory role of secreted chondroitin sulfate proteoglycans on oncolytic viral (OV) therapy was examined. Chondroitinase ABC (Chase-ABC) is a bacterial enzyme that can remove chondroitin sulfate glycosaminoglycans from proteoglycans without any deleterious effects in vivo. We examined the effect of Chase-ABC on OV spread and efficacy. Experimental Design: Three-dimensional glioma spheroids placed on cultured brain slices were utilized to evaluate OV spread. Replication-conditional OV-expressing Chase-ABC (OV-Chase) was engineered using HSQuik technology and tested for spread and efficacy in glioma spheroids. Subcutaneous and intracranial glioma xenografts were utilized to compare antitumor efficacy of OV-Chase, rHsvQ (control), and PBS. Titration of viral particles was performed from OV-treated subcutaneous tumors. Glioma invasion was assessed in collagen-embedded glioma spheroids in vitro and in intracranial tumors. All statistical tests were two sided. Results: Treatment with Chase-ABC in cultured glioma cells significantly enhanced OV spread in glioma spheroids grown on brain slices (P < 0.0001). Inoculation of subcutaneous glioma xenografts with Chase-expressing OV significantly increased viral titer (>10 times, P = 0.0008), inhibited tumor growth, and significantly increased overall animal survival (P < 0.006) compared with treatment with parental rHsvQ virus. Single OV-Chase administration in intracranial xenografts also resulted in longer median survival of animals than rHsvQ treatment (32 vs. 21 days, P < 0.018). Glioma cell migration and invasion were not increased by OV-Chase treatment. Conclusions: We conclude that degradation of glioma extracellular matrix with OV-expressing bacterial Chase-ABC enhanced OV spread and antitumor efficacy. Clin Cancer Res; 17(6); 1362–72. ©2010 AACR.


Cancer Research | 2016

Myeloid-derived suppressor cells express Bruton's tyrosine kinase and can be depleted in tumor bearing hosts by ibrutinib treatment

Andrew Stiff; Prashant Trikha; Robert Wesolowski; Kari Kendra; Vincent Hsu; Sarvani Uppati; Elizabeth McMichael; Megan C. Duggan; Amanda Campbell; Karen Keller; Ian Landi; Yiming Zhong; Jason A. Dubovsky; John Harrison Howard; Lianbo Yu; Bonnie K. Harrington; Matthew Old; Sean D. Reiff; Thomas A. Mace; Susheela Tridandapani; Natarajan Muthusamy; Michael A. Caligiuri; John C. Byrd; William E. Carson

Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of immature myeloid cells that expand in tumor-bearing hosts in response to soluble factors produced by tumor and stromal cells. MDSC expansion has been linked to loss of immune effector cell function and reduced efficacy of immune-based cancer therapies, highlighting the MDSC population as an attractive therapeutic target. Ibrutinib, an irreversible inhibitor of Brutons tyrosine kinase (BTK) and IL2-inducible T-cell kinase (ITK), is in clinical use for the treatment of B-cell malignancies. Here, we report that BTK is expressed by murine and human MDSCs, and that ibrutinib is able to inhibit BTK phosphorylation in these cells. Treatment of MDSCs with ibrutinib significantly impaired nitric oxide production and cell migration. In addition, ibrutinib inhibited in vitro generation of human MDSCs and reduced mRNA expression of indolamine 2,3-dioxygenase, an immunosuppressive factor. Treatment of mice bearing EMT6 mammary tumors with ibrutinib resulted in reduced frequency of MDSCs in both the spleen and tumor. Ibrutinib treatment also resulted in a significant reduction of MDSCs in wild-type mice bearing B16F10 melanoma tumors, but not in X-linked immunodeficiency mice (XID) harboring a BTK mutation, suggesting that BTK inhibition plays an important role in the observed reduction of MDSCs in vivo Finally, ibrutinib significantly enhanced the efficacy of anti-PD-L1 (CD274) therapy in a murine breast cancer model. Together, these results demonstrate that ibrutinib modulates MDSC function and generation, revealing a potential strategy for enhancing immune-based therapies in solid malignancies. Cancer Res; 76(8); 2125-36. ©2016 AACR.


Blood | 2013

Overexpression of miR-155 causes expansion, arrest in terminal differentiation and functional activation of mouse natural killer cells

Rossana Trotta; Li Chen; Stefan Costinean; Srirama Josyula; Bethany L. Mundy-Bosse; David Ciarlariello; Charlene Mao; Edward L. Briercheck; Kathleen McConnell; Anjali Mishra; Lianbo Yu; Carlo M. Croce; Michael A. Caligiuri

It is known that microRNAs (miRs) are involved in lymphocyte development, homeostasis, activation, and occasionally malignant transformation. In this study, a miR-155 transgene (tg) was driven to be overexpressed off of the lck promoter in order to assess its effects on natural killer (NK) cell biology in vivo. miR-155 tg mice have an increase in NK-cell number with an excess of the CD11b(low)CD27(high) NK subset, indicative of a halt in terminal NK-cell differentiation that proved to be intrinsic to the cell itself. The increase in NK cells results, in part, from improved survival in medium alone and enhanced expansion with endogenous or exogenous interleukin 15. Phenotypic and functional data from miR-155 tg NK cells showed constitutive activation and enhanced target cell conjugation, resulting in more potent antitumor activity in vitro and improved survival of lymphoma-bearing mice in vivo when compared with wild type NK cells. The enhanced NK-cell survival, expansion, activation, and tumor control that result from overexpression of miR-155 in NK cells could be explained, in part, via diminished expression of the inositol phosphatase SHIP1 and increased activation of ERK and AKT kinases. Thus, the regulation of miR-155 is important for NK-cell development, homeostasis, and activation.


Clinical Cancer Research | 2007

Melanoma Cells Exhibit Variable Signal Transducer and Activator of Transcription 1 Phosphorylation and a Reduced Response to IFN-α Compared with Immune Effector Cells

Gregory B. Lesinski; John Trefry; Melanie Brasdovich; Sri Vidya Kondadasula; Korkor Sackey; Jason M. Zimmerer; Abhik Ray Chaudhury; Lianbo Yu; Xiaoli Zhang; Tim Crespin; Michael J. Walker; William E. Carson

Purpose: IFN-α is administered to melanoma patients and its endogenous production is essential for immune-mediated tumor recognition. We hypothesized that a reduced capacity for signal transducer and activator of transcription (STAT) 1 activation allows melanoma cells to evade the direct actions of IFN-α. Experimental Design: Tyr701-phosphorylated STAT1 (P-STAT1) was measured by flow cytometry in IFN-α–stimulated human melanoma cell lines, melanoma cells derived from patient tumors, and peripheral blood mononuclear cells (PBMC). Expression of other Janus-activated kinase (Jak)-STAT intermediates (STAT1, STAT2, Jak1, tyrosine kinase 2, IFN-α receptor, STAT3, and STAT5) was evaluated by flow cytometry, immunoblot, or immunohistochemistry. Results: Significant variability in P-STAT1 was observed in human melanoma cell lines following IFN-α treatment (P < 0.05) and IFN-α–induced P-STAT1 correlated with the antiproliferative effects of IFN-α (P = 0.042). Reduced formation of P-STAT1 was not explained by loss of Jak-STAT proteins or enhanced STAT5 signaling as reported previously. Basal levels of P-STAT3 were inversely correlated with IFN-α–induced P-STAT1 in cell lines (P = 0.013). IFN-α–induced formation of P-STAT1 was also variable in melanoma cells derived from patient tumors; however, no relationship between P-STAT3 and IFN-α–induced P-STAT1 was evident. Because IFN-α acts on both tumor and immune cells, we examined the ability of IFN-α to induce P-STAT1 in patient-derived melanoma cells and PBMCs. IFN-α induced significantly lower levels of P-STAT1 in melanoma cells compared with matched PBMCs (P = 0.046). Melanoma cells and human melanocytes required 10-fold higher IFN-α doses to exert P-STAT1 levels comparable with PBMCs. Conclusions: Melanoma cells are variable in their IFN-α responsiveness, and cells of the melanocytic lineage exhibit a lower capacity for IFN-α–induced Jak-STAT signaling compared with immune cells.

Collaboration


Dive into the Lianbo Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raleigh D. Kladney

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge