Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liang-Jiao Xue is active.

Publication


Featured researches published by Liang-Jiao Xue.


Nucleic Acids Research | 2009

Characterization and expression profiles of miRNAs in rice seeds

Liang-Jiao Xue; Jing-Jing Zhang; Hong-Wei Xue

Small RNAs (sRNAs) are common and effective modulators of gene expression in eukaryotic organisms. To characterize the sRNAs expressed during rice seed development, massively parallel signature sequencing (MPSS) was performed, resulting in the obtainment of 797 399 22-nt sequence signatures, of which 111 161 are distinct ones. Analysis on the distributions of sRNAs on chromosomes showed that most sRNAs originate from interspersed repeats that mainly consist of transposable elements, suggesting the major function of sRNAs in rice seeds is transposon silencing. Through integrative analysis, 26 novel miRNAs and 12 miRNA candidates were identified. Further analysis on the expression profiles of the known and novel miRNAs through hybridizing the generated chips revealed that most miRNAs were expressed preferentially in one or two rice tissues. Detailed comparison of the expression patterns of miRNAs and corresponding target genes revealed the negative correlation between them, while few of them are positively correlated. In addition, differential accumulations of miRNAs and corresponding miRNA*s suggest the functions of miRNA*s other than being passenger strands of mature miRNAs, and in regulating the miRNA functions.


Plant Physiology | 2011

Rice ABI5-Like1 Regulates Abscisic Acid and Auxin Responses by Affecting the Expression of ABRE-Containing Genes

Xi Yang; Ya-Nan Yang; Liang-Jiao Xue; Meijuan Zou; Jian-Ying Liu; Fan Chen; Hong-Wei Xue

Abscisic acid (ABA) regulates plant development and is crucial for plant responses to biotic and abiotic stresses. Studies have identified the key components of ABA signaling in Arabidopsis (Arabidopsis thaliana), some of which regulate ABA responses by the transcriptional regulation of downstream genes. Here, we report the functional identification of rice (Oryza sativa) ABI5-Like1 (ABL1), which is a basic region/leucine zipper motif transcription factor. ABL1 is expressed in various tissues and is induced by the hormones ABA and indole-3-acetic acid and stress conditions including salinity, drought, and osmotic pressure. The ABL1 deficiency mutant, abl1, shows suppressed ABA responses, and ABL1 expression in the Arabidopsis abi5 mutant rescued the ABA sensitivity. The ABL1 protein is localized to the nucleus and can directly bind ABA-responsive elements (ABREs; G-box) in vitro. A gene expression analysis by DNA chip hybridization confirms that a large proportion of down-regulated genes of abl1 are involved in stress responses, consistent with the transcriptional activating effects of ABL1. Further studies indicate that ABL1 regulates the plant stress responses by regulating a series of ABRE-containing WRKY family genes. In addition, the abl1 mutant is hypersensitive to exogenous indole-3-acetic acid, and some ABRE-containing genes related to auxin metabolism or signaling are altered under ABL1 deficiency, suggesting that ABL1 modulates ABA and auxin responses by directly regulating the ABRE-containing genes.


PLOS ONE | 2012

Genome-Wide Analysis of the Complex Transcriptional Networks of Rice Developing Seeds

Liang-Jiao Xue; Jing-Jing Zhang; Hong-Wei Xue

Background The development of rice (Oryza sativa) seed is closely associated with assimilates storage and plant yield, and is fine controlled by complex regulatory networks. Exhaustive transcriptome analysis of developing rice embryo and endosperm will help to characterize the genes possibly involved in the regulation of seed development and provide clues of yield and quality improvement. Principal Findings Our analysis showed that genes involved in metabolism regulation, hormone response and cellular organization processes are predominantly expressed during rice development. Interestingly, 191 transcription factor (TF)-encoding genes are predominantly expressed in seed and 59 TFs are regulated during seed development, some of which are homologs of seed-specific TFs or regulators of Arabidopsis seed development. Gene co-expression network analysis showed these TFs associated with multiple cellular and metabolism pathways, indicating a complex regulation of rice seed development. Further, by employing a cold-resistant cultivar Hanfeng (HF), genome-wide analyses of seed transcriptome at normal and low temperature reveal that rice seed is sensitive to low temperature at early stage and many genes associated with seed development are down-regulated by low temperature, indicating that the delayed development of rice seed by low temperature is mainly caused by the inhibition of the development-related genes. The transcriptional response of seed and seedling to low temperature is different, and the differential expressions of genes in signaling and metabolism pathways may contribute to the chilling tolerance of HF during seed development. Conclusions These results provide informative clues and will significantly improve the understanding of rice seed development regulation and the mechanism of cold response in rice seed.


Molecular Plant | 2009

Global analysis of gene expression profiles in Brassica napus developing seeds reveals a conserved lipid metabolism regulation with Arabidopsis thaliana.

Ya Niu; Guo-Zhang Wu; Rui Ye; Wen-Hui Lin; Qiu-Ming Shi; Liang-Jiao Xue; Xiao-Dong Xu; Yao Li; Yu-Guang Du; Hong-Wei Xue

In order to study Brassica napus fatty acid (FA) metabolism and relevant regulatory networks, a systematic identification of fatty acid (FA) biosynthesis-related genes was conducted. Following gene identification, gene expression profiles during B. napus seed development and FA metabolism were performed by cDNA chip hybridization (>8000 EST clones from seed). The results showed that FA biosynthesis and regulation, and carbon flux, were conserved between B. napus and Arabidopsis. However, a more critical role of starch metabolism was detected for B. napus seed FA metabolism and storage-component accumulation when compared with Arabidopsis. In addition, a crucial stage for the transition of seed-to-sink tissue was 17-21 d after flowering (DAF), whereas FA biosynthesis-related genes were highly expressed primarily at 21 DAF. Hormone (auxin and jasmonate) signaling is found to be important for FA metabolism. This study helps to reveal the global regulatory network of FA metabolism in developing B. napus seeds.


Molecular Plant | 2009

Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis.

Li Song; Xiao-Yi Zhou; Laigeng Li; Liang-Jiao Xue; Xiaolu Yang; Hong-Wei Xue

Light and brassinosteroids (BRs) have been proved to be crucial in regulating plant growth and development; however, the mechanism of how they synergistically function is still largely unknown. To explore the underlying mechanisms in photomorphogenesis, genome-wide analyses were carried out through examining the gene expressions of the dark-grown WT or BR biosynthesis-defective mutant det2 seedlings in the presence of light stimuli or exogenous Brassinolide (BL). Results showed that BR deficiency stimulates, while BL treatment suppresses, the expressions of light-responsive genes and photomorphogenesis, confirming the negative effects of BR in photomorphogenesis. This is consistent with the specific effects of BR on the expression of genes involved in cell wall modification, cellular metabolism and energy utilization during dark-light transition. Further analysis revealed that hormone biosynthesis and signaling-related genes, especially those of auxin, were altered under BL treatment or light stimuli, indicating that BR may modulate photomorphogenesis through synergetic regulation with other hormones. Additionally, suppressed ubiquitin-cycle pathway during light-dark transition hinted the presence of a complicated network among light, hormone, and protein degradation. The study provides the direct evidence of BR effects in photomorphogenesis and identified the genes involved in BR and light signaling pathway, which will help to elucidate the molecular mechanism of plant photomorphogenesis.


The Plant Cell | 2013

Constitutively Elevated Salicylic Acid Levels Alter Photosynthesis and Oxidative State but Not Growth in Transgenic Populus

Liang-Jiao Xue; Wenbing Guo; Yinan Yuan; Edward O. Anino; Batbayar Nyamdari; Mark C. Wilson; Christopher J. Frost; Han-Yi Chen; Benjamin A. Babst; Scott A. Harding; Chung-Jui Tsai

This study describes transcriptional and metabolic network rewiring in Populus that overaccumulate SA by two to three orders of magnitude without negative effects on growth. The work provides in planta evidence for a direct link between SA and oxidative response and contrasts sharply with Arabidopsis where growth and SA overproduction are not compatible. Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained.


GM crops & food | 2015

CRISPRing into the woods.

Chung-Jui Tsai; Liang-Jiao Xue

ABSTRACT The CRISPR/Cas9 technology is a welcome breakthrough for genome editing, owing to its precision, efficiency, versatility and ease of adoption. We recently reported the first application of CRISPR/Cas9 for biallelic mutations in stably transformed Populus, extending the species range of this powerful technology to woody perennials. An underappreciated obstacle in genome editing of outcrossing species is the frequent occurrence of sequence polymorphisms that can render CRISPR/Cas9 unproductive. We discuss experimental evidence as well as genome-wide computational analysis to demonstrate the sensitivity of CRISPR/Cas9 to allelic heterozygosity, and highlight tools and strategies that can help deal with such sequence polymorphisms. With its specificity, CRISPR/Cas9 offers a less equivocal means than previous approaches for discerning functional redundancy of paralogous genes that are prevalent in plant genomes. Continuing improvements of the CRISPR/Cas9 system for multiplex genome engineering should facilitate these efforts. The paradigm shift brought about by CRISPR/Cas9 promises to accelerate not only basic research but also applied crop improvement progress.


Frontiers in Plant Science | 2014

Bayesian phylogeny of sucrose transporters: ancient origins, differential expansion and convergent evolution in monocots and dicots.

Duo Peng; Xi Gu; Liang-Jiao Xue; Jim Leebens-Mack; Chung-Jui Tsai

Sucrose transporters (SUTs) are essential for the export and efficient movement of sucrose from source leaves to sink organs in plants. The angiosperm SUT family was previously classified into three or four distinct groups, Types I, II (subgroup IIB), and III, with dicot-specific Type I and monocot-specific Type IIB functioning in phloem loading. To shed light on the underlying drivers of SUT evolution, Bayesian phylogenetic inference was undertaken using 41 sequenced plant genomes, including seven basal lineages at key evolutionary junctures. Our analysis supports four phylogenetically and structurally distinct SUT subfamilies, originating from two ancient groups (AG1 and AG2) that diverged early during terrestrial colonization. In both AG1 and AG2, multiple intron acquisition events in the progenitor vascular plant established the gene structures of modern SUTs. Tonoplastic Type III and plasmalemmal Type II represent evolutionarily conserved descendants of AG1 and AG2, respectively. Type I and Type IIB were previously thought to evolve after the dicot-monocot split. We show, however, that divergence of Type I from Type III SUT predated basal angiosperms, likely associated with evolution of vascular cambium and phloem transport. Type I SUT was subsequently lost in monocots along with vascular cambium, and independent evolution of Type IIB coincided with modified monocot vasculature. Both Type I and Type IIB underwent lineage-specific expansion. In multiple unrelated taxa, the newly-derived SUTs exhibit biased expression in reproductive tissues, suggesting a functional link between phloem loading and reproductive fitness. Convergent evolution of Type I and Type IIB for SUT function in phloem loading and reproductive organs supports the idea that differential vascular development in dicots and monocots is a strong driver for SUT family evolution in angiosperms.


Tree Physiology | 2014

Condensed tannin biosynthesis and polymerization synergistically condition carbon use, defense, sink strength and growth in Populus

Scott A. Harding; Liang-Jiao Xue; Lei Du; Batbayar Nyamdari; Richard L. Lindroth; Robert W. Sykes; Mark F. Davis; Chung-Jui Tsai

The partitioning of carbon for growth, storage and constitutive chemical defenses is widely framed in terms of a hypothetical sink-source differential that varies with nutrient supply. According to this framework, phenolics accrual is passive and occurs in source leaves when normal sink growth is not sustainable due to a nutrient limitation. In assessing this framework, we present gene and metabolite evidence that condensed tannin (CT) accrual is strongest in sink leaves and sequesters carbon in a way that impinges upon foliar sink strength and upon phenolic glycoside (PG) accrual in Populus. The work was based on two Populus fremontii × angustifolia backcross lines with contrasting rates of CT accrual and growth, and equally large foliar PG reserves. However, foliar PG accrual was developmentally delayed in the high-CT, slow-growth line (SG), and nitrogen-limitation led to increased foliar PG accrual only in the low-CT, fast-growth line (FG). Metabolite profiling of developing leaves indicated comparatively carbon-limited amino acid metabolism, depletion of several Krebs cycle intermediates and reduced organ sink strength in SG. Gene profiling indicated that CT synthesis decreased as leaves expanded and PGs increased. A most striking finding was that the nitrogenous monoamine phenylethylamine accumulated only in leaves of SG plants. The potential negative impact of CT hyper-accumulation on foliar sink strength, as well as a mechanism for phenylethylamine involvement in CT polymerization in Populus are discussed. Starch accrual in source leaves and CT accrual in sink leaves of SG may both contribute to the maintenance of a slow-growth phenotype suited to survival in nutrient-poor habitats.


Journal of Experimental Botany | 2015

Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus

Prashant Swamy; Hao Hu; Sivakumar Pattathil; Victoria J. Maloney; Hui Xiao; Liang-Jiao Xue; Jeng Der Chung; Virgil Ed Johnson; Yingying Zhu; Gary F. Peter; Michael G. Hahn; Shawn D. Mansfield; Scott A. Harding; Chung-Jui Tsai

Highlight Growth-compatible, post-translational modifications of tubulin in transgenic Populus alter cell wall pectin-xylan networks and guard cell movement.

Collaboration


Dive into the Liang-Jiao Xue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong-Wei Xue

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xi Gu

University of Georgia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hao Hu

University of Georgia

View shared research outputs
Top Co-Authors

Avatar

Jing-Jing Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Benjamin A. Babst

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge