Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liangbin Hu is active.

Publication


Featured researches published by Liangbin Hu.


Molecules | 2016

The Fungicidal Activity of Thymol against Fusarium graminearum via Inducing Lipid Peroxidation and Disrupting Ergosterol Biosynthesis

Tao Gao; Hao Zhou; Wei Zhou; Liangbin Hu; Jian Chen; Zhiqi Shi

Thymol is a natural plant-derived compound that has been widely used in pharmaceutical and food preservation applications. However, the antifungal mechanism for thymol against phytopathogens remains unclear. In this study, we identified the antifungal action of thymol against Fusarium graminearum, an economically important phytopathogen showing severe resistance to traditional chemical fungicides. The sensitivity of thymol on different F. graminearum isolates was screened. The hyphal growth, as well as conidial production and germination, were quantified under thymol treatment. Histochemical, microscopic, and biochemical approaches were applied to investigate thymol-induced cell membrane damage. The average EC50 value of thymol for 59 F. graminearum isolates was 26.3 μg·mL−1. Thymol strongly inhibited conidial production and hyphal growth. Thymol-induced cell membrane damage was indicated by propidium iodide (PI) staining, morphological observation, relative conductivity, and glycerol measurement. Thymol induced a significant increase in malondialdehyde (MDA) concentration and a remarkable decrease in ergosterol content. Taken together, thymol showed potential antifungal activity against F. graminearum due to the cell membrane damage originating from lipid peroxidation and the disturbance of ergosterol biosynthesis. These results not only shed new light on the antifungal mechanism of thymol, but also imply a promising alternative for the control of Fusarium head blight (FHB) disease caused by F. graminearum.


Chemosphere | 2013

Microcystin-LR-induced phytotoxicity in rice crown root is associated with the cross-talk between auxin and nitric oxide

Jian Chen; Haiqiang Zhang; Liangbin Hu; Zhi-Qi Shi

Irrigation with cyanobacterial-blooming water containing microcystin-LR (MC-LR) poses threat to the growth of agricultural plants. Large amounts of rice (Oryza sativa) field in the middle part of China has been irrigating with cyanobacterial-blooming water. Nevertheless, the mechanism of MC-LR-induced phytotoxicity in the root of monocot rice remains unclear. In the present study, we demonstrate that MC-LR stress significantly inhibits the growth of rice root by impacting the morphogenesis rice crown root. MC-LR treatment results in the decrease in IAA (indole-3-acetic acid) concentration as well as the expression of CRL1 and WOX11 in rice roots. The application of NAA (1-naphthylacetic acid), an IAA homologue, is able to attenuate the inhibitory effect of MC-LR on rice root development. MC-LR treatment significantly inhibits OsNia1-dependent NO generation in rice roots. The application of NO donor SNP (sodium nitroprusside) is able to partially reverse the inhibitory effects of MC-LR on the growth of rice root and the expression of CRL1 and WOX11 by enhancing endogenous NO level in rice roots. The application of NO scavenger cPTIO [2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide] eliminates the effects of SNP. Treatment with NAA stimulates the generation of endogenous NO in MC-LR-treated rice roots. Treatment with NO scavenger cPTIO abolishes the ameliorated effect of NAA on MC-LR-induced growth inhibition of rice root. Treatment with SNP enhanced IAA concentration in MC-LR-treated rice roots. Altogether, our data suggest that NO acts both downstream and upstream of auxin in regulating rice root morphogenesis under MC-LR stress.


International Journal of Molecular Sciences | 2009

Lysis of Microcystis aeruginosa with Extracts from Chinese Medicinal Herbs

Jing-Dong Yang; Liangbin Hu; Wei Zhou; Yufen Yin; Jian Chen; Zhiqi Shi

Boiling water extracts of 66 selected Chinese medicinal herbs were screened for their anticyanobaterial activity against Microcystis aeruginosa by the soft-agar overlayer (SAO) method. Results indicated that extracts from 16 materials could inhibit the growth of this bacterial species. Among these anticyanobacterial samples, eight extracts showed low minimum inhibitory concentrations (MIC), including four extracts with MICs between 1 and 6 mg/mL, and four extracts with MICs < 1 mg/mL which could be considered useful to prevent the outbreak of cyanobacteria before the appearance of cyanobacterial blooms. Further study showed that three extracts with MIC values < 1 mg/mL induced intensive chlorophyll-a lysis within 7 days at the MIC. The results suggested that highly efficient anticyanobacterial compounds must be involved in the inhibitory activities. The final results indicated these three extracts (from Malaphis chinensis, Cynips gallae-tinctoriae and Fructus mume) had the potential to be developed as algicides due to their remarkably anticyanobacterial activities.


PLOS ONE | 2013

Ca2+ Efflux Is Involved in Cinnamaldehyde-Induced Growth Inhibition of Phytophthora capsici

Liangbin Hu; Dede Wang; Li Liu; Jian Chen; Yanfeng Xue; Zhiqi Shi

As a destructive fungus-like plant pathogen, the oomycete Phytophthoracapsici is unable to synthesize its own ergosterol as the potential target of fungicide cinnamaldehyde (CA). In this study, CA exerted efficient inhibitory effects on both mycelial growth (EC50=0.75 mM) and zoospore germination (MIC=0.4 mM) of P . capsici . CA-induced immediate Ca2+ efflux from zoospores could be confirmed by the rapid decrease in intracellular Ca2+ content determined by using Fluo-3 AM and the increase in extracellular Ca2+ concentration determined by using ICP-AES (inductively coupled plasma atomic emission spectrometry). Blocking Ca2+ influx with ruthenium red and verapamil led to a higher level of CA-induced Ca2+ efflux, suggesting the simultaneous occurrence of Ca2+ influx along with the Ca2+ efflux under CA exposure. Further results showed that EGTA-induced decrease in intracellular Ca2+ gave rise to the impaired vitality of P . capsici while the addition of exogenous Ca2+ could suppress the growth inhibitory effect of CA. These results suggested that Ca2+ efflux played an important role in CA-induced growth inhibition of P . capsici . The application of 3-phenyl-1-propanal, a CA analog without α,β- unsaturated bond, resulted in a marked Ca2+ influx in zoospores but did not show any growth inhibitory effects. In addition, exogenous cysteine, an antagonist against the Michael addition (the nucleophilic addition of a carbanion or another nucleophile) between CA and its targets, could attenuate CA-induced growth inhibition of P . capsici by suppressing Ca2+ efflux. Our results suggest that CA inhibits the growth of P . capsici by stimulating a transient Ca2+ efflux via Michael addition, which provides important new insights into the antimicrobial action of CA.


Molecules | 2016

Thymol Mitigates Cadmium Stress by Regulating Glutathione Levels and Reactive Oxygen Species Homeostasis in Tobacco Seedlings

Xiefeng Ye; Tianxiao Ling; Yanfeng Xue; Cunfa Xu; Wei Zhou; Liangbin Hu; Jian Chen; Zhiqi Shi

Thymol is a famous plant-derived compound that has been widely used in pharmacy due to its antioxidant and antimicrobial properties. However, the modulation of intrinsic plant physiology by thymol remains unclear. It is a significant challenge to confer plant tolerance to Cd (cadmium) stress. In the present study physiological, histochemical, and biochemical methods were applied to investigate thymol-induced Cd tolerance in tobacco (Nicotiana tabacum) seedlings. Thymol was able to alleviate Cd-induced growth inhibition of tobacco seedlings in both dose- and time-dependent manners. Both histochemical detection and in-tube assays suggested that thymol treatment blocked Cd-induced over-generation of reactive oxygen species (ROS), lipid peroxidation, and loss of membrane integrity in both leaves and roots. Thymol decreased Cd-induced cell death that was indicated in vivo by propidium iodide (PI) and trypan blue, respectively. Thymol stimulated glutathione (GSH) biosynthesis by upregulating the expression of γ-glutamylcysteine synthetase 1 (GSH1) in Cd-treated seedlings, which may contribute to the alleviation of Cd-induced oxidative injury. In situ fluorescent detection of intracellular Cd2+ revealed that thymol significantly decreased free Cd2+ in roots, which could be explained by the thymol-stimulated GSH biosynthesis and upregulation of the expression of phyochelatin synthase 1 (PCS1). Taken together, these results suggested that thymol has great potential to trigger plant resistant responses to combat heavy metal toxicity, which may help our understanding of the mechanism for thymol-modulated cell metabolic pathways in response to environmental stimuli.


Journal of Agricultural and Food Chemistry | 2017

Thymol Ameliorates Cadmium-Induced Phytotoxicity in the Root of Rice (Oryza sativa) Seedling by Decreasing Endogenous Nitric Oxide Generation

Ting-Ting Wang; Zhi Qi Shi; Liangbin Hu; Xiao-Feng Xu; Fengxiang X. Han; Li-Gang Zhou; Jian Chen

Thymol has been developed as medicine and food preservative due to its immune-regulatory effect and antimicrobial activity, respectively. However, little is currently known about the role of thymol in the modulation of plant physiology. In the present study, we applied biochemical and histochemical approaches to investigate thymol-induced tolerance in rice (Oryza sativa) seedlings against Cd (cadmium) stress. Thymol at 20 μM recovered root growth completely upon CdCl2 exposure. Thymol pronouncedly decreased Cd-induced ROS accumulation, oxidative injury, cell death, and Cd2+ accumulation in roots. Pharmaceutical experiments suggested that endogenous NO mediated Cd-induced phytotoxicity. Thymol decreased Cd-induced NO accumulation by suppressing the activity of NOS (nitric oxide synthase) and NR (nitrate reductase) in root. The application of NO donor (SNP, sodium nitroprusside) resulted in the increase in endogenous NO level, which in turn compromised the alleviating effects of thymol on Cd toxicity. Such findings may helpful to illustrate the novel role of thymol in the modulation of plant physiology, which may be applicable to improve crop stress tolerance.


PLOS ONE | 2017

Bactericidal activity of alpha-bromocinnamaldehyde against persisters in Escherichia coli

Qingshan Shen; Wei Zhou; Liangbin Hu; Yonghua Qi; Hongmei Ning; Jian Chen; Hai-Zhen Mo

Persisters are tolerant to multiple antibiotics, and widely distributed in bacteria, fungi, parasites, and even cancerous human cell populations, leading to recurrent infections and relapse after therapy. In this study, we investigated the potential of cinnamaldehyde and its derivatives to eradicate persisters in Escherichia coli. The results showed that 200 μg/ml of alpha-bromocinnamaldehyde (Br-CA) was capable of killing all E. coli cells during the exponential phase. Considering the heterogeneous nature of persisters, multiple types of persisters were induced and exposed to Br-CA. Our results indicated that no cells in the ppGpp-overproducing strain or TisB-overexpressing strain survived the treatment of Br-CA although considerable amounts of persisters to ampicillin (Amp) and ciprofloxacin (Cip) were induced. Chemical induction by carbonyl cyanide m-chlorophenylhydrazone (CCCP) led to the formation of more than 10% persister to Amp and Cip in the entire population, and Br-CA still completely eradicated them. In addition, the cells in the stationary phase, which are usually highly recalcitrant to antibiotics treatment, were also completely eradicated by 400 μg/ml of Br-CA. Further studies showed that neither thiourea (hydroxyl-radical scavenger) nor DPTA (Fe3+ chelator to block the hydroxyl-radical) affected the bactericidal efficiency of the Br-CA to kill E. coli, indicating a ROS-independent bactericidal mechanism. Taken together, we concluded that Br-CA compound has a novel bactericidal mechanism and the potential to mitigate antibiotics resistance crisis.


Molecules | 2016

Cinnamaldehyde Ameliorates Cadmium-Inhibited Root Elongation in Tobacco Seedlings via Decreasing Endogenous Hydrogen Sulfide Production

Xiefeng Ye; Yanfeng Xue; Tianxiao Ling; Yong Wang; Xiao-Na Yu; Changxin Cheng; Guosheng Feng; Liangbin Hu; Zhiqi Shi; Jian Chen

Cinnamaldehyde (CA) is natural plant-derived compound that has been highly appreciated for its medicinal properties. However, little information is known about the regulation of plant intrinsic physiology by CA. To address these gaps, physiological, histochemical, and biochemical approaches were applied to investigate CA-facilitated cadmium (Cd) tolerance in the roots of tobacco (Nicotiana tabacum) seedlings. Treatment with CdCl2 at 20 μM for 72 h resulted in the significant decrease in root elongation by 40.39% as compared to control. CA alleviated Cd-inhibited root elongation in dose- and time-dependent manners. The addition of CA at 20 μM induced significant increase in root elongation by 42.58% as compared to Cd treatment alone. CA abolished Cd-induced ROS (reactive oxygen species) accumulation, lipid peroxidation, loss of membrane integrity, cell death, and free Cd2+ accumulation in roots. CA blocked the Cd-induced increase in the endogenous H2S level through the down-regulation of d-cysteine desulfhydrase (DCD) expression. H2S scavenger hypotaurine (HT) or potent H2S-biosynthetic inhibitor dl-propargylglicine (PAG) were able mimic the action of CA on the blockade of Cd-induced H2S accumulation, cell death, and growth inhibition. Enhancement of the endogenous H2S level with NaHS (H2S donor) abrogated all the beneficial capabilities of CA, HT, and PAG. Collectively, these results suggest that CA has great potential to confer plant tolerance against Cd stress, which is closely associated with its capability to inhibit Cd-induced H2S production. This study not only provides evidences for the regulation of plant physiology by CA but also sheds new light on the cross-talk between CA and H2S in physiological modulations.


Journal of Agricultural and Food Chemistry | 2018

Eugenol Confers Cadmium Tolerance via Intensifying Endogenous Hydrogen Sulfide Signaling in Brassica rapa

Liangbin Hu; Hui Li; Sijie Huang; Chao Wang; Wei-Jie Sun; Hai-Zhen Mo; Zhi Qi Shi; Jian Chen

Eugenol, a plant-derived small compound, shows great medicinal potential. However, whether and how eugenol regulates crop physiology remains elusive. Here we reported that eugenol induced Cd (cadmium) tolerance in the root of Brassica rapa. Roots were treated with eugenol and CdCl2 simultaneously (eugenol + Cd) or pretreated with eugenol followed by CdCl2 treatment (eugenol → Cd). Eugenol significantly attenuated Cd-induced growth inhibition, ROS accumulation, oxidative injury, and cell death, which were confirmed by in vivo histochemical analysis. Eugenol remarkably decreased free Cd2+ accumulation in root. Eugenol intensified GSH (glutathione) accumulation in roots upon CdCl2 exposure, which explained the decrease in free Cd2+ and attenuation of oxidative injury. Eugenol stimulated endogenous H2S (hydrogen sulfide) generation by upregulating the expression of BrLCD ( l-cysteine desulfhydrase) and BrDCD ( d-cysteine desulfhydrase) as well as their enzymatic activities in CdCl2-treated root. Application of H2S biosynthesis inhibitor or H2S scavenger led to the decrease in endogenous H2S level in Cd-treated root, which further compromised all the above effects of eugenol. These findings suggested that eugenol triggered H2S → GSH signaling cassette in plants to combat Cd stress, which shed new light on eugenol-modulated plant physiology and the interaction between eugenol and H2S.


Journal of Agricultural and Food Chemistry | 2018

Thymol Induces Conidial Apoptosis in Aspergillus flavus via Stimulating K+ Eruption

Liangbin Hu; Fang-Fang Ban; Hongbo Li; Pan-Pan Qian; Qingshan Shen; Yan-Yan Zhao; Hai-Zhen Mo; Xiaohui Zhou

Aspergillus flavus is a notorious foodborne fungus, posing a significant risk to humans in the form of hepatocellular carcinoma or aspergillosis. Thymol, as a food preservative, could efficiently kill conidia of A. flavus. However, the underlying mechanisms by which thymol kills A. flavus are not completely understood. With specific fluorescent dyes, we detected several apoptotic hallmarks, including chromatin condensation, phosphatidylserine externalization, DNA damage, mitochondrial depolarization, and caspase 9 activation in conidia exposed to 200 μg/mL of thymol, indicating that thymol induced a caspase-dependent conidial apoptosis in A. flavus. Chemical-protein interactome (CPI) and autodock analyses showed that KCNAB, homologue to the β-subunit of the voltage-gated potassium channel (Kv) and aldo-keto reductase, was the potential target of thymol. Following studies demonstrated that thymol could activate the aldo-keto reductase activity of KCNAB in vitro and stimulate a transient K+ efflux in conidia, as determined using a Port-a-Patch. Blocking K+ eruption by 4-aminopyridine (a universal inhibitor of Kv) could significantly alleviate thymol-mediated conidial apoptosis, indicating that activation of Kv was responsible for the apoptosis. Taken together, our results revealed a K+ efflux-mediated apoptotic pathway in A. flavus, which greatly contributed to the development of an alternative strategy to control this pathogen.

Collaboration


Dive into the Liangbin Hu's collaboration.

Top Co-Authors

Avatar

Xiaohui Zhou

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Dede Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Haiqiang Zhang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Li Liu

Nanjing Normal University

View shared research outputs
Top Co-Authors

Avatar

Li-Gang Zhou

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wei-Jie Sun

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge