Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where bo Liang is active.

Publication


Featured researches published by bo Liang.


Nature Nanotechnology | 2014

Graphene nanoribbon heterojunctions

Jinming Cai; Carlo A. Pignedoli; Leopold Talirz; Pascal Ruffieux; Hajo Söde; Liangbo Liang; Vincent Meunier; Reinhard Berger; Rongjin Li; Xinliang Feng; Klaus Müllen; Roman Fasel

Despite graphenes remarkable electronic properties, the lack of an electronic bandgap severely limits its potential for applications in digital electronics. In contrast to extended films, narrow strips of graphene (called graphene nanoribbons) are semiconductors through quantum confinement, with a bandgap that can be tuned as a function of the nanoribbon width and edge structure. Atomically precise graphene nanoribbons can be obtained via a bottom-up approach based on the surface-assisted assembly of molecular precursors. Here we report the fabrication of graphene nanoribbon heterojunctions and heterostructures by combining pristine hydrocarbon precursors with their nitrogen-substituted equivalents. Using scanning probe methods, we show that the resulting heterostructures consist of seamlessly assembled segments of pristine (undoped) graphene nanoribbons (p-GNRs) and deterministically nitrogen-doped graphene nanoribbons (N-GNRs), and behave similarly to traditional p-n junctions. With a band shift of 0.5 eV and an electric field of 2 × 10(8) V m(-1) at the heterojunction, these materials bear a high potential for applications in photovoltaics and electronics.


Nano Letters | 2014

Electronic Bandgap and Edge Reconstruction in Phosphorene Materials

Liangbo Liang; Jun Wang; Wenzhi Lin; Bobby G. Sumpter; Vincent Meunier; Minghu Pan

Single-layer black phosphorus (BP), or phosphorene, is a highly anisotropic two-dimensional elemental material possessing promising semiconductor properties for flexible electronics. However, the direct bandgap of single-layer black phosphorus predicted theoretically has not been directly measured, and the properties of its edges have not been considered in detail. Here we report atomic scale electronic variation related to strain-induced anisotropic deformation of the puckered honeycomb structure of freshly cleaved black phosphorus using a high-resolution scanning tunneling spectroscopy (STS) survey along the light (x) and heavy (y) effective mass directions. Through a combination of STS measurements and first-principles calculations, a model for edge reconstruction is also determined. The reconstruction is shown to self-passivate most dangling bonds by switching the coordination number of phosphorus from 3 to 5 or 3 to 4.


Nano Letters | 2016

Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus

Xi Ling; Shengxi Huang; Eddwi H. Hasdeo; Liangbo Liang; William M. Parkin; Yuki Tatsumi; Ahmad R. T. Nugraha; Alexander A. Puretzky; Paul Masih Das; Bobby G. Sumpter; David B. Geohegan; Jing Kong; Riichiro Saito; Marija Drndic; Vincent Meunier; Mildred S. Dresselhaus

Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride (GaTe) and tin selenide (SnSe), stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulates the development of angle-resolved photonics and electronics. However, understanding the effect of anisotropy has remained unsatisfactory to date, as shown by a number of inconsistencies in the recent literature. We use angle-resolved absorption and Raman spectroscopies to investigate the role of anisotropy on the electron-photon and electron-phonon interactions in BP. We highlight, both experimentally and theoretically, a nontrivial dependence between anisotropy and flake thickness and photon and phonon energies. We show that once understood, the anisotropic optical absorption appears to be a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectroscopy without the explicit consideration of excitation wavelength and flake thickness, as commonly used previously.


Nano Letters | 2015

Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus

Xi Ling; Liangbo Liang; Shengxi Huang; Alexander A. Puretzky; David B. Geohegan; Bobby G. Sumpter; Jing Kong; Vincent Meunier; Mildred S. Dresselhaus

As a new two-dimensional layered material, black phosphorus (BP) is a very promising material for nanoelectronics and optoelectronics. We use Raman spectroscopy and first-principles theory to characterize and understand the low-frequency (LF) interlayer breathing modes (<100 cm(-1)) in few-layer BP for the first time. Using a laser polarization dependence study and group theory analysis, the breathing modes are assigned to Ag symmetry. Compared to the high-frequency (HF) Raman modes, the LF breathing modes are considerably more sensitive to interlayer coupling and, thus, their frequencies show a stronger dependence on the number of layers. Hence, they constitute an effective means to probe both the crystalline orientation and thickness of few-layer BP. Furthermore, the temperature dependence shows that in the temperature range -150 to 30 °C, the breathing modes have a weak anharmonic behavior, in contrast to the HF Raman modes that exhibit strong anharmonicity.


Nano Letters | 2014

Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy.

Shengxi Huang; Xi Ling; Liangbo Liang; Humberto Terrones; Vincent Meunier; Jing Kong; Mildred S. Dresselhaus

Two-dimensional molybdenum disulfide (MoS2) is a promising material for optoelectronic devices due to its strong photoluminescence emission. In this work, the photoluminescence of twisted bilayer MoS2 is investigated, revealing a tunability of the interlayer coupling of bilayer MoS2. It is found that the photoluminescence intensity ratio of the trion and exciton reaches its maximum value for the twisted angle 0° or 60°, while for the twisted angle 30° or 90° the situation is the opposite. This is mainly attributed to the change of the trion binding energy. The first-principles density functional theory analysis further confirms the change of the interlayer coupling with the twisted angle, which interprets our experimental results.


ACS Nano | 2015

Low-Frequency Raman Fingerprints of Two-Dimensional Metal Dichalcogenide Layer Stacking Configurations

Alexander A. Puretzky; Liangbo Liang; Xufan Li; Kai Xiao; Kai Wang; Masoud Mahjouri-Samani; Leonardo Basile; Juan Carlos Idrobo; Bobby G. Sumpter; Vincent Meunier; David B. Geohegan

The tunable optoelectronic properties of stacked two-dimensional (2D) crystal monolayers are determined by their stacking orientation, order, and atomic registry. Atomic-resolution Z-contrast scanning transmission electron microscopy (AR-Z-STEM) and electron energy loss spectroscopy (EELS) can be used to determine the exact atomic registration between different layers, in few-layer 2D stacks; however, fast optical characterization techniques are essential for rapid development of the field. Here, using two- and three-layer MoSe2 and WSe2 crystals synthesized by chemical vapor deposition, we show that the generally unexplored low frequency (LF) Raman modes (<50 cm(-1)) that originate from interlayer vibrations can serve as fingerprints to characterize not only the number of layers, but also their stacking configurations. Ab initio calculations and group theory analysis corroborate the experimental assignments determined by AR-Z-STEM and show that the calculated LF mode fingerprints are related to the 2D crystal symmetries.


Nano Letters | 2015

Molecular selectivity of graphene-enhanced Raman scattering.

Shengxi Huang; Xi Ling; Liangbo Liang; Yi Song; Wenjing Fang; Jin Zhang; Jing Kong; Vincent Meunier; Mildred S. Dresselhaus

Graphene-enhanced Raman scattering (GERS) is a recently discovered Raman enhancement phenomenon that uses graphene as the substrate for Raman enhancement and can produce clean and reproducible Raman signals of molecules with increased signal intensity. Compared to conventional Raman enhancement techniques, such as surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS), in which the Raman enhancement is essentially due to the electromagnetic mechanism, GERS mainly relies on a chemical mechanism and therefore shows unique molecular selectivity. In this paper, we report graphene-enhanced Raman scattering of a variety of different molecules with different molecular properties. We report a strong molecular selectivity for the GERS effect with enhancement factors varying by as much as 2 orders of magnitude for different molecules. Selection rules are discussed with reference to two main features of the molecule, namely its molecular energy levels and molecular structures. In particular, the enhancement factor involving molecular energy levels requires the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies to be within a suitable range with respect to graphenes Fermi level, and this enhancement effect can be explained by the time-dependent perturbation theory of Raman scattering. The enhancement factor involving the choice of molecular structures indicates that molecular symmetry and substituents similar to that of the graphene structure are found to be favorable for GERS enhancement. The effectiveness of these factors can be explained by group theory and the charge-transfer interaction between molecules and graphene. Both factors, involving the molecular energy levels and structural symmetry of the molecules, suggest that a remarkable GERS enhancement requires strong molecule-graphene coupling and thus effective charge transfer between the molecules and graphene. These conclusions are further experimentally supported by the change of the UV-visible absorption spectra of molecules when in contact with graphene and these conclusions are theoretically corroborated by first-principles calculations. These research findings are important for gaining fundamental insights into the graphene-molecule interaction and the chemical mechanism in Raman enhancement, as well as for advancing the role of such understanding both in guiding chemical and molecule detection applications and in medical and biological technology developments.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Ultrasensitive gas detection of large-area boron-doped graphene

Ruitao Lv; Gugang Chen; Qing Li; Amber McCreary; Andrés R. Botello-Méndez; S. V. Morozov; Liangbo Liang; Xavier Declerck; Nestor Perea-Lopez; David A. Cullen; Simin Feng; Ana Laura Elías; Rodolfo Cruz-Silva; Kazunori Fujisawa; Morinobu Endo; Feiyu Kang; Jean-Christophe Charlier; Vincent Meunier; Minghu Pan; Avetik R. Harutyunyan; K. S. Novoselov; Mauricio Terrones

Significance The gas-sensing performance of graphene could be remarkably enhanced by incorporating dopants into its lattice based on theoretical calculations. However, to date, experimental progress on boron-doped graphene (BG) is still very scarce. Here, we achieved the controlled growth of large-area, high-crystallinity BG sheets and shed light on their electronic features associated with boron dopants at the atomic scale. As a proof-of-concept, it is demonstrated that boron doping in graphene could lead to a much enhanced sensitivity when detecting toxic gases (e.g. NO2). Our results will open up new avenues for developing high-performance sensors able to detect trace amount of molecules. In addition, other new fascinating properties can be exploited based on as-synthesized large-area BG sheets. Heteroatom doping is an efficient way to modify the chemical and electronic properties of graphene. In particular, boron doping is expected to induce a p-type (boron)-conducting behavior to pristine (nondoped) graphene, which could lead to diverse applications. However, the experimental progress on atomic scale visualization and sensing properties of large-area boron-doped graphene (BG) sheets is still very scarce. This work describes the controlled growth of centimeter size, high-crystallinity BG sheets. Scanning tunneling microscopy and spectroscopy are used to visualize the atomic structure and the local density of states around boron dopants. It is confirmed that BG behaves as a p-type conductor and a unique croissant-like feature is frequently observed within the BG lattice, which is caused by the presence of boron-carbon trimers embedded within the hexagonal lattice. More interestingly, it is demonstrated for the first time that BG exhibits unique sensing capabilities when detecting toxic gases, such as NO2 and NH3, being able to detect extremely low concentrations (e.g., parts per trillion, parts per billion). This work envisions that other attractive applications could now be explored based on as-synthesized BG.


Journal of Materials Chemistry C | 2016

Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material

Ming-Wei Lin; Houlong L. Zhuang; Jiaqiang Yan; Thomas Ward; Alexander A. Puretzky; Christopher M. Rouleau; Zheng Gai; Liangbo Liang; Vincent Meunier; Bobby G. Sumpter; Panchapakesan Ganesh; Paul R. C. Kent; David B. Geohegan; D. Mandrus; Kai Xiao

Finite range ferromagnetism and antiferromagnetism in two-dimensional (2D) systems within an isotropic Heisenberg model at non-zero temperature were originally proposed to be impossible. However, recent theoretical studies using an Ising model have shown that 2D magnetic crystals can exhibit magnetism. Experimental verification of existing 2D magnetic crystals in this system has remained exploratory. In this work we exfoliated CrSiTe3, a bulk ferromagnetic semiconductor, to mono- and few-layer 2D crystals onto a Si/SiO2 substrate. Raman spectra indicate good stability and high quality of the exfoliated flakes, consistent with the computed phonon spectra of 2D CrSiTe3, giving strong evidence for the existence of 2D CrSiTe3 crystals. When the thickness of the CrSiTe3 crystals is reduced to a few layers, we observed a clear change in resistivity at 80–120 K, consistent with theoretical calculations of the Curie temperature (Tc) of ∼80 K for the magnetic ordering of 2D CrSiTe3 crystals. The ferromagnetic mono- and few-layer 2D CrSiTe3 indicated here should enable numerous applications in nano-spintronics.


Nano Letters | 2016

Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS2

Shengxi Huang; Liangbo Liang; Xi Ling; Alexander A. Puretzky; David B. Geohegan; Bobby G. Sumpter; Jing Kong; Vincent Meunier; Mildred S. Dresselhaus

van der Waals homo- and heterostructures assembled by stamping monolayers together present optoelectronic properties suitable for diverse applications. Understanding the details of the interlayer stacking and resulting coupling is crucial for tuning these properties. We investigated the low-frequency interlayer shear and breathing Raman modes (<50 cm(-1)) in twisted bilayer MoS2 by Raman spectroscopy and first-principles modeling. Twisting significantly alters the interlayer stacking and coupling, leading to notable frequency and intensity changes of low-frequency modes. The frequency variation can be up to 8 cm(-1) and the intensity can vary by a factor of ∼5 for twisting angles near 0° and 60°, where the stacking is a mixture of high-symmetry stacking patterns and is thus sensitive to twisting. For twisting angles between 20° and 40°, the interlayer coupling is nearly constant because the stacking results in mismatched lattices over the entire sample. It follows that the Raman signature is relatively uniform. Note that for some samples, multiple breathing mode peaks appear, indicating nonuniform coupling across the interface. In contrast to the low-frequency interlayer modes, high-frequency intralayer Raman modes are much less sensitive to interlayer stacking and coupling. This research demonstrates the effectiveness of low-frequency Raman modes for probing the interfacial coupling and environment of twisted bilayer MoS2 and potentially other two-dimensional materials and heterostructures.

Collaboration


Dive into the bo Liang's collaboration.

Top Co-Authors

Avatar

Vincent Meunier

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Bobby G. Sumpter

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alexander A. Puretzky

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David B. Geohegan

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Kai Xiao

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xi Ling

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mildred S. Dresselhaus

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Shengxi Huang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jing Kong

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

An-Ping Li

Oak Ridge National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge