Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liangjun Yin is active.

Publication


Featured researches published by Liangjun Yin.


Genes and Diseases | 2014

The versatile functions of Sox9 in development, stem cells, and human diseases

Alice Jo; Sahitya Denduluri; Zhang Bq; Zhongliang Wang; Liangjun Yin; Zhengjian Yan; Richard W. Kang; Lewis L. Shi; James M. Mok; Michael J. Lee; Rex C. Haydon

The transcription factor Sox9 was first discovered in patients with campomelic dysplasia, a haploinsufficiency disorder with skeletal deformities caused by dysregulation of Sox9 expression during chondrogenesis. Since then, its role as a cell fate determiner during embryonic development has been well characterized; Sox9 expression differentiates cells derived from all three germ layers into a large variety of specialized tissues and organs. However, recent data has shown that ectoderm- and endoderm-derived tissues continue to express Sox9 in mature organs and stem cell pools, suggesting its role in cell maintenance and specification during adult life. The versatility of Sox9 may be explained by a combination of post-transcriptional modifications, binding partners, and the tissue type in which it is expressed. Considering its importance during both development and adult life, it follows that dysregulation of Sox9 has been implicated in various congenital and acquired diseases, including fibrosis and cancer. This review provides a summary of the various roles of Sox9 in cell fate specification, stem cell biology, and related human diseases. Ultimately, understanding the mechanisms that regulate Sox9 will be crucial for developing effective therapies to treat disease caused by stem cell dysregulation or even reverse organ damage.


International Journal of Oncology | 2014

The PTEN/PI3K/Akt and Wnt/β-catenin signaling pathways are involved in the inhibitory effect of resveratrol on human colon cancer cell proliferation

Ying-Zi Liu; Ke Wu; Jun Huang; Yang Liu; Xin Wang; Zi-Jun Meng; Shuang-Xue Yuan; Dong-Xu Wang; Jinyong Luo; Guo-Wei Zuo; Liangjun Yin; Liang Chen; Zhong-Liang Deng; Jun-Qin Yang; Wen-Juan Sun; Bai-Cheng He

Colon cancer is one of the most common malignancies and the treatments for colon cancer have been developed substantially in the last decades, but there is still a great clinical need to explore new treatment regimens due to the undesirable prognosis. In this investigation, we demonstrated the anti-proliferative and apoptosis-inducing activities of resveratrol (Res) in human colon cancer cells, and the possible mechanisms underlying these effects. We used crystal violet staining, flow cytometry and western blotting to validate the anti-proliferative and apoptosis-inducing effects of Res on HCT116 cells. A xenograft tumor model was used to confirm the anti-proliferative effects of Res. We employed polymerase chain reaction, western blotting, recombinant adenovirus and luciferase reporter assay to explore the possible mechanism(s) of action. We found that Res inhibits significantly the proliferation and promotes apoptosis in HCT116 cells, as well as inhibits the xenograft tumor growth of colon cancer. Res upregulates the expression of phosphatase and tensin homolog (PTEN) and decreases the phosphorylation of Akt1/2. The exogenous expression of PTEN inhibits the PI3K/Akt signal and promotes the anti-proliferative effects of Res in HCT116 cells, while knockdown of PTEN increases PI3K/Akt signal but reduces the anti-proliferative function of Res. The protein and mRNA expression of β-catenin are all decreased by Res concentration-dependently. Thus, our findings strongly suggest that the anti-proliferative effects of Res in human colon cancer cells may be mediated by regulating separately the PTEN/PI3K/Akt and Wnt/β-catenin signaling.


PLOS ONE | 2014

Adenovirus-Mediated Gene Transfer in Mesenchymal Stem Cells Can Be Significantly Enhanced by the Cationic Polymer Polybrene

Chen Zhao; Ningning Wu; Fang Deng; Hongmei Zhang; Ning Wang; Wenwen Zhang; Xian Chen; Sheng Wen; Junhui Zhang; Liangjun Yin; Zhan Liao; Zhonglin Zhang; Qian Zhang; Zhengjian Yan; Wei Liu; Di Wu; Jixing Ye; Youlin Deng; Guolin Zhou; Hue H. Luu; Rex C. Haydon; Weike Si; Tong-Chuan He

Mesenchymal stem cells (MSCs) are multipotent progenitors, which can undergo self-renewal and give rise to multi-lineages. A great deal of attentions have been paid to their potential use in regenerative medicine as potential therapeutic genes can be introduced into MSCs. Genetic manipulations in MSCs requires effective gene deliveries. Recombinant adenoviruses are widely used gene transfer vectors. We have found that although MSCs can be infected in vitro by adenoviruses, high virus titers are needed to achieve high efficiency. Here, we investigate if the commonly-used cationic polymer Polybrene can potentiate adenovirus-mediated transgene delivery into MSCs, such as C2C12 cells and iMEFs. Using the AdRFP adenovirus, we find that AdRFP transduction efficiency is significantly increased by Polybrene in a dose-dependent fashion peaking at 8 μg/ml in C2C12 and iMEFs cells. Quantitative luciferase assay reveals that Polybrene significantly enhances AdFLuc-mediated luciferase activity in C2C12 and iMEFs at as low as 4 μg/ml and 2 μg/ml, respectively. FACS analysis indicates that Polybrene (at 4 μg/ml) increases the percentage of RFP-positive cells by approximately 430 folds in AdRFP-transduced iMEFs, suggesting Polybrene may increase adenovirus infection efficiency. Furthermore, Polybrene can enhance AdBMP9-induced osteogenic differentiation of MSCs as early osteogenic marker alkaline phosphatase activity can be increased more than 73 folds by Polybrene (4 μg/ml) in AdBMP9-transduced iMEFs. No cytotoxicity was observed in C2C12 and iMEFs at Polybrene up to 40 μg/ml, which is about 10-fold higher than the effective concentration required to enhance adenovirus transduction in MSCs. Taken together, our results demonstrate that Polybrene should be routinely used as a safe, effective and inexpensive augmenting agent for adenovirus-mediated gene transfer in MSCs, as well as other types of mammalian cells.


PLOS ONE | 2014

Adenovirus-mediated efficient gene transfer into cultured three-dimensional organoids.

Ning Wang; Hongyu Zhang; Bing-Qiang Zhang; Wei Liu; Zhonglin Zhang; Min Qiao; Hongmei Zhang; Fang Deng; Ningning Wu; Xian Chen; Sheng Wen; Junhui Zhang; Zhan Liao; Qian Zhang; Zhengjian Yan; Liangjun Yin; Jixing Ye; Youlin Deng; Hue H. Luu; Rex C. Haydon; Houjie Liang; Tong-Chuan He

Three-dimensional organoids have been recently established from various tissue-specific progenitors (such as intestinal stem cells), induced pluripotent stem cells, or embryonic stem cells. These cultured self-sustaining stem cell–based organoids may become valuable systems to study the roles of tissue-specific stem cells in tissue genesis and disease development. It is thus conceivable that effective genetic manipulations in such organoids may allow us to reconstruct disease processes and/or develop novel therapeutics. Recombinant adenoviruses are one of the most commonly used viral vectors for in vitro and in vivo gene deliveries. In this study, we investigate if adenoviruses can be used to effectively deliver transgenes into the cultured “mini-gut” organoids derived from intestinal stem cells. Using adenoviral vectors that express fluorescent proteins, we demonstrate that adenoviruses can effectively deliver transgenes into the cultured 3-D “mini-gut” organoids. The transgene expression can last at least 10 days in the cultured organoids. As a proof-of-principle experiment, we demonstrate that adenovirus-mediated noggin expression effectively support the survival and self-renewal of mini-gut organoids, while adenovirus-mediated expression of BMP4 inhibits the self-sustainability and proliferation of the organoids. Thus, our results strongly suggest that adenovirus vectors can be explored as effective gene delivery vehicles to introduce genetic manipulations in 3-D organoids.


Stem Cells and Development | 2014

Bone Morphogenetic Protein-9 Effectively Induces Osteo/Odontoblastic Differentiation of the Reversibly Immortalized Stem Cells of Dental Apical Papilla

Jinhua Wang; Hongmei Zhang; Wenwen Zhang; Enyi Huang; Ning Wang; Ningning Wu; Sheng Wen; Xian Chen; Zhan Liao; Fang Deng; Liangjun Yin; Junhui Zhang; Qian Zhang; Zhengjian Yan; Wei Liu; Zhonglin Zhang; Jixing Ye; Youlin Deng; Hue H. Luu; Rex C. Haydon; Tong-Chuan He; Feng Deng

Dental pulp/dentin regeneration using dental stem cells combined with odontogenic factors may offer great promise to treat and/or prevent premature tooth loss. We previously demonstrated that bone morphogenetic protein 9 (BMP9) is one of the most potent factors in inducing bone formation. Here, we investigate whether BMP9 can effectively induce odontogenic differentiation of the stem cells from mouse apical papilla (SCAPs). Using a reversible immortalization system expressing SV40 T flanked with Cre/loxP sites, we demonstrate that the SCAPs can be immortalized, resulting in immortalized SCAPs (iSCAPs) that express mesenchymal stem cell markers. BMP9 upregulates Runx2, Sox9, and PPARγ2 and odontoblastic markers, and induces alkaline phosphatase activity and matrix mineralization in the iSCAPs. Cre-mediated removal of SV40 T antigen decreases iSCAP proliferation. The in vivo stem cell implantation studies indicate that iSCAPs can differentiate into bone, cartilage, and, to lesser extent, adipocytes upon BMP9 stimulation. Our results demonstrate that the conditionally iSCAPs not only maintain long-term cell proliferation but also retain the ability to differentiate into multiple lineages, including osteo/odontoblastic differentiation. Thus, the reversibly iSCAPs may serve as an important tool to study SCAP biology and SCAP translational use in tooth engineering. Further, BMP9 may be explored as a novel and efficacious factor for odontogenic regeneration.


PLOS ONE | 2014

The piggyBac Transposon-Mediated Expression of SV40 T Antigen Efficiently Immortalizes Mouse Embryonic Fibroblasts (MEFs)

Ning Wang; Wenwen Zhang; Jing Cui; Hongmei Zhang; Xiang Chen; Ruidong Li; Ningning Wu; Xian Chen; Sheng Wen; Junhui Zhang; Liangjun Yin; Fang Deng; Zhan Liao; Zhonglin Zhang; Qian Zhang; Zhengjian Yan; Wei Liu; Jixing Ye; Youlin Deng; Zhongliang Wang; Min Qiao; Hue H. Luu; Rex C. Haydon; Lewis L. Shi; Houjie Liang; Tong-Chuan He

Mouse embryonic fibroblasts (MEFs) are mesenchymal stem cell (MSC)-like multipotent progenitor cells and can undergo self-renewal and differentiate into to multiple lineages, including bone, cartilage and adipose. Primary MEFs have limited life span in culture, which thus hampers MEFs’ basic research and translational applications. To overcome this challenge, we investigate if piggyBac transposon-mediated expression of SV40 T antigen can effectively immortalize mouse MEFs and that the immortalized MEFs can maintain long-term cell proliferation without compromising their multipotency. Using the piggyBac vector MPH86 which expresses SV40 T antigen flanked with flippase (FLP) recognition target (FRT) sites, we demonstrate that mouse embryonic fibroblasts (MEFs) can be efficiently immortalized. The immortalized MEFs (piMEFs) exhibit an enhanced proliferative activity and maintain long-term cell proliferation, which can be reversed by FLP recombinase. The piMEFs express most MEF markers and retain multipotency as they can differentiate into osteogenic, chondrogenic and adipogenic lineages upon BMP9 stimulation in vitro. Stem cell implantation studies indicate that piMEFs can form bone, cartilage and adipose tissues upon BMP9 stimulation, whereas FLP-mediated removal of SV40 T antigen diminishes the ability of piMEFs to differentiate into these lineages, possibly due to the reduced expansion of progenitor populations. Our results demonstrate that piggyBac transposon-mediated expression of SV40 T can effectively immortalize MEFs and that the reversibly immortalized piMEFs not only maintain long-term cell proliferation but also retain their multipotency. Thus, the high transposition efficiency and the potential footprint-free natures may render piggyBac transposition an effective and safe strategy to immortalize progenitor cells isolated from limited tissue supplies, which is essential for basic and translational studies.


Gene Therapy | 2014

Overexpression of Ad5 precursor terminal protein accelerates recombinant adenovirus packaging and amplification in HEK-293 packaging cells

Ningning Wu; Hongbin Zhang; Fang Deng; Ruifang Li; Wenwen Zhang; Xian Chen; Sheng Wen; Ning Wang; Junhui Zhang; Liangjun Yin; Zhan Liao; Zhonglin Zhang; Qian Zhang; Zhengjian Yan; Wei Liu; Di Wu; Jixing Ye; Youlin Deng; Ke Yang; Hue H. Luu; Rex C. Haydon; Tong-Chuan He

Recombinant adenoviruses are one of the most common vehicles for efficient in vitro and in vivo gene deliveries. Here, we investigate whether exogenous precursor terminal protein (pTP) expression in 293 cells improves the efficiency of adenovirus packaging and amplification. We used a piggyBac transposon-based vector and engineered a stable 293 line that expresses high level of Ad5 pTP, designated as 293pTP. Using the AdBMP6-GLuc that expresses green fluorescent protein (GFP), BMP6 and Gaussia luciferase, we found that the infectivity of AdBMP6-GLuc viral samples packaged in 293pTP cells was titrated up to 19.3 times higher than that packaged in parental 293 cells. AdBMP6-GLuc viral samples packaged in 293pTP cells exhibited significantly higher transduction efficiency in 143B and immortalized mouse embryonic fibroblast (iMEF) cells, as assessed by fluorescence-activated cell sorting analysis of GFP-positive cells, the luciferase activity assay and BMP6-induced osteogenic marker alkaline phosphatase activities in iMEFs. When adenovirus amplification efficiency was analyzed, we found that 293pTP cells infected with AdBMP6-GLuc yielded up to 12.6 times higher titer than that in parental 293 cells, especially at lower multiplicities of infection. These results strongly suggest that exogenous pTP expression may accelerate the packaging and amplification of recombinant adenoviruses. Thus, the engineered 293pTP cells should be a superior packaging line for efficient adenovirus production.


The International Journal of Biochemistry & Cell Biology | 2014

All-trans retinoic acid modulates bone morphogenic protein 9-induced osteogenesis and adipogenesis of preadipocytes through BMP/Smad and Wnt/β-catenin signaling pathways.

Yang Liu; Ying-Zi Liu; Ran-Xi Zhang; Xing Wang; Fan Huang; Zhengjian Yan; Mao Nie; Jun Huang; Yuanzheng Wang; Yang Wang; Liang Chen; Liangjun Yin; Bai-Cheng He; Zhong-Liang Deng

It is known that excessive adipogenesis contributes to osteoporosis, suggesting that trans-differentiation of adipogenic committed preadipocytes into osteoblasts may be a potential therapeutical approach for osteoporosis. We explored whether bone morphogenic protein 9 (BMP9) could induce 3T3-L1 preadipocytes to trans-differentiate into osteoblasts. BMP9 effectively increased expression of osteogenic markers and promoted mineralization in preadipocytes. However, BMP9 also led to adipogenic differentiation of preadipocytes, as evidenced by increased lipid accumulation and up-regulation of adipogenic transcription factors. In order to regulate the switch between osetogenesis and adipogenesis, we evaluated the effect of all-trans retinoic acid (ATRA) on BMP9-induced differentiation of preadipocytes. We found that ATRA enhanced BMP9-induced osteogenic differentiation and blocked BMP9-induced adipogenic differentiation both in vitro and in vivo. Mechanistically, ATRA was shown to elevate BMP9 expression and activate BMP/Smad signaling. Additionally, BMP9 and ATRA exerted a synergistic effect on activation of Wnt/β-catenin signaling. Knockdown of β-catenin abolished the stimulatory effect of ATRA on BMP9-induced alkaline phosphatase activity and reversed the inhibitory effect of ATRA on BMP9-induced adipogenesis in preadipocytes. Furthermore, ATRA and BMP9 synergistically repressed glycogen synthase kinase 3β (GSK3β) activity and promoted Akt phosphorylation, and inhibited expression of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) that antagonizes phosphatidylinositol-3-kinase (PI3K) function, suggesting that Wnt/β-catenin signaling was activated at least partly through PI3K/Akt/GSK3β pathway. Collectively, ATRA mediated BMP9-induced osteogenic or adipogenic differentiation of 3T3-L1 preadipocytes by BMP/Smad and Wnt/β-catenin signaling. The combination of BMP9 and ATRA may be explored as an effective therapeutic strategy for osteoporosis.


Current Cancer Drug Targets | 2014

Targeting BMP9-Promoted Human Osteosarcoma Growth by Inactivation of Notch Signaling

Ruidong Li; Wenwen Zhang; Jing Cui; Wei Shui; Liangjun Yin; Yang Wang; Hongyu Zhang; Ning Wang; Ningning Wu; Guoxin Nan; Xian Chen; Sheng Wen; Fang Deng; Hongmei Zhang; Guolin Zhou; Zhan Liao; Junhui Zhang; Qian Zhang; Zhengjian Yan; Wei Liu; Zhonglin Zhang; Jixing Ye; Youlin Deng; Hue H. Luu; Rex C. Haydon; Tong-Chuan He; Zhong-Liang Deng

Osteosarcoma (OS) is the most common primary malignancy of bone and is usually associated with poor prognosis due to its high incidence of metastasis and chemoresistance. Molecular pathogenesis of OS is poorly understood. We previously showed that OS cells are refractory to BMP9-induced osteogenesis and respond favorably to proliferation and tumor growth. Here we investigate if Notch signaling mediates the BMP9-promoted cell proliferation and tumor growth of human osteosarcoma (OS). We find that the expression of Notch1, Notch2, Notch3, DLL1, JAG1 and JAG2 is readily detected in most of the tested OS cell lines. BMP9-promoted OS cell proliferation, migration, and cell cycle S/G2 progression are effectively inhibited by a dominant-negative mutant of Notch1 (dnNotch1) or the γ-secretase inhibitor Compound E (ComE). Furthermore, BMP9-promoted tumor growth and osteolytic lesions in vivo are significantly inhibited by dnNotch1. BMP9 up-regulates the expression of Notch1, Notch3, DLL1, and JAG1 in OS cells. Accordingly, BMP9 stimulation induces a nuclear accumulation of NICD, which is blocked by ComE. Our results demonstrate that BMP9-promoted OS proliferation and tumor growth is at least in part mediated by Notch signaling, suggesting that osteogenic BMPs may function as upstream regulators of Notch signaling in OS tumorigenesis. Thus, pharmacologic intervention of Notch signaling may be explored as a new therapeutic strategy for human OS tumors.


Oncology Reports | 2014

Bone morphogenetic protein 2 inhibits the proliferation and growth of human colorectal cancer cells

Yunyuan Zhang; Xian Chen; Min Qiao; Bing-Qiang Zhang; Ning Wang; Zhonglin Zhang; Zhan Liao; Liyi Zeng; Youlin Deng; Fang Deng; Junhui Zhang; Liangjun Yin; Wei Liu; Qian Zhang; Zhengjian Ya; Jixing Ye; Zhongliang Wang; Lan Zhou; Hue H. Luu; Rex C. Haydon; Tong-Chuan He; Hongyu Zhang

Colorectal cancer (CRC) is one of the most deadly cancers worldwide. Significant progress has been made in understanding the molecular pathogenesis of CRC, which has led to successful early diagnosis, surgical intervention and combination chemotherapy. However, limited therapeutic options are available for metastatic and/or drug-resistant CRC. While the aberrantly activated Wnt/β-catenin pathway plays a critical initiating role in CRC development, disruption of the bone morphogenetic protein (BMP) pathway causes juvenile polyposis syndrome, suggesting that BMP signaling may play a role in CRC development. However, conflicting results have been reported concerning the possible roles of BMP signaling in sporadic colon cancer. Here, we investigated the effect of BMP2 on the proliferation, migration, invasiveness and tumor growth capability of human CRC cells. Using an adenovirus vector that overexpresses BMP2 and the piggyBac transposon-mediated stable BMP2 overexpression CRC line, we found that exogenous BMP2 effectively inhibited HCT116 cell proliferation and colony formation. BMP2 was shown to suppress colon cancer cell migration and invasiveness. Under a low serum culture condition, forced expression of BMP2 induced a significantly increased level of apoptosis in HCT116 cells. Using a xenograft tumor model, we found that forced expression of BMP2 in HCT116 cells suppressed tumor growth, accompanied by decreased cell proliferation activity. Taken together, our results strongly suggest that BMP2 plays an important inhibitory role in governing the proliferation and aggressive features of human CRC cells.

Collaboration


Dive into the Liangjun Yin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhong-Liang Deng

Chongqing Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fang Deng

University of Chicago

View shared research outputs
Top Co-Authors

Avatar

Ning Wang

University of Chicago

View shared research outputs
Top Co-Authors

Avatar

Wei Shui

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge