Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liangmin Huang is active.

Publication


Featured researches published by Liangmin Huang.


Marine Pollution Bulletin | 2003

The characteristics of nutrients and eutrophication in the Pearl River estuary, South China

Xiaoping Huang; Liangmin Huang; Wei-Zhong Yue

In the spring of 1998, 24-h time series and synchronization of vertical profiles of NO(3)-N, NO(2)-N, NH(3)-N, PO(4)-P, chlorophyll a, suspended substance, salinity, temperature and other chemical parameters were taken at 10 stations in the Pearl River estuary in order to analyze the status and characteristics of nutrients and eutrophication. The results indicated that dissolved inorganic nitrogen (DIN) mainly came from the four river channels in the main estuary, and NO(3)-N was the main form of DIN in most area. The concentration of DIN was general above 0.30 mg l(-1) in the estuary, and more than 0.50 mgl(-1) in most part. Phosphate from four river channels was not the main sources, but land-based sources from the area near Shenzhen Bay or along the estuary were obvious, and other land-based sources outside the estuary brought by coastal current and flood tide current were also the main contributions. The concentration of phosphate was generally about 0.015 mg l(-1) except the area near Shenzhen Bay. The ratio of N:P was generally high, and it was higher in the north than in the south. The highest ratio was higher than 300, and the lowest one was over 30. The concentration of chlorophyll a was about 0.8-7.8 mg m(-3), and turbidity and phosphate may be the main two limiting factors for algal bloom in the estuary. The concentration of nutrients decreased slightly in the past decade, but still stayed at a high level. The nutrients mainly came from domestic sewage, industrial wastewater, agriculture fertilizer and marine culture in the Pearl River estuary.


Marine Pollution Bulletin | 2003

The status of the ecological environment and a proposed protection strategy in Sanya Bay, Hainan Island, China

Liangmin Huang; Yehui Tan; Xingyu Song; Xiaoping Huang; Hankui Wang; Si Zhang; Junde Dong; Rongyu Chen

Sanya Bay encompasses a high diversity of natural habitats, ranging from coral reefs, rocky and sandy shores and mudflats to mangroves. Seasonal physicochemical and biological investigations were conducted from 1998 to 1999 and again in April 2000. Water-related environmental quality in Sanya Bay is in good condition. The levels of dissolved oxygen, nitrogen, phosphorus and heavy metals are within the first class of National Seawater Quality Standards for China. Annual mean values of chlorophyll a of 0.93 mg m(-3) and phytoplankton primary productivity of 440.8 mgC m(-2)d(-1), respectively, were found in the waters, both of which show a significant correlation with inorganic nitrogen. A mean new productivity of 144.6 mgC m(-2) d(-1) was recorded in summer. Sanya Bay is rich in natural resources and biodiversity with 235 species of phytoplankton and 129 species of zooplankton identified in the survey. The annual mean abundance of phytoplankton and zooplankton were 1564 x 10 cells m(-3) and 121 individuals m(-3), respectively, with an annual mean zooplankton biomass of 129 mg m(-3). A total of 243 species of fish were sampled in the survey including many of high economic value. Three hundred and eighty-four species of benthos in 121 families were found by mud sampling and trawling. The average biomass of benthic organisms was 11.55 gm(-2), with a density of 31 individuals m(-2). Molluscs were the dominant group, followed by crustaceans; coelenterates exhibited the lowest biomass. One hundred and twenty-six species from 48 families of intertidal organisms were collected by frame sampling, with a mean annual biomass of 644.7 gm(-2) and average density of 816 individuals m(-2). The highest biomass of 1673.5 gm(-2) was collected in a coral reef region, while the highest density of 1219 individuals m(-2) occurred in a mangrove region. The coastline is characterized by coral reefs that accounts for 30% of the total coastline length in the bay, so coral reefs are a key ecosystem that are important for maintaining the regional marine resources and biodiversity. We need to pay much more attention to such diverse marine resources to maintain the integrity and function of these coastal ecosystems.


Journal of Hazardous Materials | 2012

Biotransformation and detoxification of inorganic arsenic in a marine juvenile fish Terapon jarbua after waterborne and dietborne exposure

Wei Zhang; Liangmin Huang; Wen-Xiong Wang

Arsenic (As) is a major hazardous metalloid in many aquatic environments. This study quantified the biotransformation of two inorganic As species [As(III) and As(V)] in a marine juvenile grunt Terapon jarbua following waterborne and dietborne exposures for 10d. The fish were fed As contaminated artificial diets at nominal concentrations of 50, 150, and 500μg As(III) and As(V)/g (dry weight), and their transformation and growth responses were compared to those exposed to 100μg/L waterborne As(III) and As(V). Within the 10d exposure period, waterborne and dietborne inorganic As exposure had no significant effect on the fish growth performance. The bioaccumulation of As was very low and not proportional to the inorganic As exposure concentration. We demonstrated that both inorganic As(III) and As(V) in the dietborne and waterborne phases were rapidly biotransformed to the less toxic arsenobetaine (AsB, 89-97%). After exposure to inorganic As, T. jarbua developed correspondingly detoxified strategies, such as the reduction of As(V) to As(III) followed by methylation to less toxic organic forms, as well as the synthesis of metal-binding proteins such as metallothionein-like proteins. This study elucidated that As(III) and As(V) had little potential toxicity on marine fish.


Nature | 2016

The seahorse genome and the evolution of its specialized morphology

Qiang Lin; Shaohua Fan; Yanhong Zhang; Meng Xu; H. W. Zhang; Yulan Yang; Alison Lee; Joost M. Woltering; Vydianathan Ravi; Helen M. Gunter; Wei Luo; Zexia Gao; Zhi Wei Lim; Geng Qin; R. Schneider; Xin Wang; Peiwen Xiong; Gang Li; Kai Wang; Jiumeng Min; Chi Zhang; Ying Qiu; Jie Bai; Weiming He; Chao Bian; Xinhui Zhang; Dai Shan; Hongyue Qu; Ying Sun; Qiang Gao

Seahorses have a specialized morphology that includes a toothless tubular mouth, a body covered with bony plates, a male brood pouch, and the absence of caudal and pelvic fins. Here we report the sequencing and de novo assembly of the genome of the tiger tail seahorse, Hippocampus comes. Comparative genomic analysis identifies higher protein and nucleotide evolutionary rates in H. comes compared with other teleost fish genomes. We identified an astacin metalloprotease gene family that has undergone expansion and is highly expressed in the male brood pouch. We also find that the H. comes genome lacks enamel matrix protein-coding proline/glutamine-rich secretory calcium-binding phosphoprotein genes, which might have led to the loss of mineralized teeth. tbx4, a regulator of hindlimb development, is also not found in H. comes genome. Knockout of tbx4 in zebrafish showed a ‘pelvic fin-loss’ phenotype similar to that of seahorses.


Bioresource Technology | 2012

Effects of inorganic carbon concentration on carbon formation, nitrate utilization, biomass and oil accumulation of Nannochloropsis oculata CS 179.

Qiang Lin; Na Gu; Gang Li; Junda Lin; Liangmin Huang; LingLing Tan

This investigation examined the effects of the inorganic carbon concentration (4, 0.8 and 0 g/L NaHCO(3)) on the carbon formation, nitrate utilization, growth and fatty acids compositions of Nannochloropsis oculata. The dissolved inorganic carbon (DIC) concentration in the three treatments decreased sharply during the first 6 days, and the percentage of dissolved organic carbon (DOC) (% of total organic carbon (TOC)) decreased with the depletion of the DIC. The NO(3)(-) assimilation of the algae was correlated with the DIC concentration. The algae in the highest DIC treatment had the highest specific grow rate (0.0843 d(-1)) (P<0.0001), and their biomass and fatty acid methyl esters (FAME) productivity were 84.00 and 9.69 mg/L/d, respectively (P<0.0001). Contents of C16 and C18 series (% of FAME) were high and the C16:0 increased with the decrease of C18:1 during the cultivation. The iodine value (IV) of the algae was low at the low DIC media.


Engineering in Life Sciences | 2012

Effect of salinity on growth, biochemical composition, and lipid productivity of Nannochloropsis oculata CS 179

Na Gu; Qiang Lin; Gang Li; Yehui Tan; Liangmin Huang; Junda Lin

Effect of salinity (15, 25, 35, 45, and 55‰) on growth, biochemical composition, and lipid productivity of Nannochloropsis oculata CS 179 was investigated under controlled cultivation in a 19‐day study. The results demonstrate that the dry biomass of N. oculata was the highest at a salinity of 25‰ among the treatments in the first 10‐day cultivation (P<0.05). During days 14–19 (stage III), the dry biomass productivity was the highest at a salinity of 35‰ (P<0.05). The algae had the highest chlorophyll a content (26.47 mg g−1) at 25‰ in stage I, and it decreased continuously at stage III. Protein content (as% of dry biomass) of algae reached the highest value of 42.25 ± 2.10% at 15‰, and the lipid content was the highest of 32.11 ± 1.30% of dry biomass at 25‰. However, the lipid productivity of these algae was the highest at 35‰ (64.71 mg L−1 d−1; P<0.001). C16 series content was the highest among the total fatty acid methyl esters (FAME), and eicosapentaenoic acid C20:5n‐3 (EPA) content was high at the low salinity. Fatty acid profiles of N. oculata varied significantly under different salinities.


Journal of Experimental Marine Biology and Ecology | 2004

Larval identification of Lutjanus Bloch in Nansha coral reefs by AFLP molecular method

Junbin Zhang; Liangmin Huang; Heqiang Huo

Abstract Species of Lutjanus Bloch are highly valued fish in some fisheries of the world and some species are cultured in the Southeast Asia especially in South China. Wild larvae are still the major source of mariculture in South China because artificial breeding techniques for most Lutjanus species have not yet been available. The Nansha coral reefs (also called Spratly Archipelago) water area, which is located in the South China Sea, is the main habitat and spawn area for Lutjanus in China. Larval identification of Lutjanus is important for relative ecological studies and mariculture, but larvae of many closely related species, such as those of the genus Lutjanus , are different to be distinguished morphologically. In the present study, a PCR-based fingerprinting technique called amplified fragment length polymorphism AFLP was used in the characterization and identification of 11 Lutjanus species captured in Nansha coral reefs. Optimal AFLP patterns were obtained with primer combination of E+AGC/M+CAA selective nucleotides. There were in total 132 AFLP loci in all specimens, and AFLP markers of each species varied from 44 to 69, but only 7 markers were fixed in all specimens. Meanwhile, high levels of intraspecific homogeneity were observed. All 11 species of Lutjanus were successfully identified by the comparative analyses of AFLP patterns. Moreover, neighbour-joining and UPGMA analyses of AFLP data were compared with current morphological taxonomic systems.


Marine Pollution Bulletin | 2011

Bacterioplankton dynamics along the gradient from highly eutrophic Pearl River Estuary to oligotrophic northern South China Sea in wet season: Implication for anthropogenic inputs

Weihua Zhou; Aimin Long; Tao Jiang; Shaoyong Chen; Liangmin Huang; Hui Huang; Chuanghua Cai; Yan Yan

Bacterioplankton abundance (BA) and biomass (BB) from the eutrophic Pearl River Estuary (PRE) to the oligotrophic northern South China Sea (NSCS) were studied in the wet season. BA was significantly higher (p < 0.05) in PRE (12.51 ± 3.52 x 10⁸ cells L⁻¹), than in the continental shelf neritic province (CSNP, 4.95 ± 2.21 x 10⁸ cells L⁻¹) and in the deep oceanic province (OP, 3.16 ± 1.56 x 10⁸ cells L⁻¹). Nutrient-replete PRE waters (DIN > 100 μM and PO₄ > 1 μM) resulted in high chl a and BB, whereas nutrient-depleted offshore waters (DIN < 5 μM and PO₄ < 0.5 μM) had low biomass. Temperature (> 26 °C) was not the controlling factor of BA. BB was significantly correlated with chl a biomass both in PRE and NSCS. The bacteria to phytoplankton biomass (BB/PB) ratio increased clearly along the gradient from near-shore PRE (0.15) to offshore CSNP (0.93) and deep OP (2.75), indicating the important role of small cells in the open ocean compared to estuarine and coastal zones.


PLOS ONE | 2011

Nuclear, Mitochondrial and Plastid Gene Phylogenies of Dinophysis miles (Dinophyceae): Evidence of Variable Types of Chloroplasts

Dajun Qiu; Liangmin Huang; Sheng Liu; Senjie Lin

The Dinophysis genus is an ecologically and evolutionarily important group of marine dinoflagellates, yet their molecular phylogenetic positions and ecological characteristics such as trophic modes remain poorly understood. Here, a population of Dinophysis miles var. indica was sampled from South China Sea in March 2010. Nuclear ribosomal RNA gene (rDNA) SSU, ITS1-5.8S-ITS2 and LSU, mitochondrial genes encoding cytochrome B (cob) and cytochrome C oxidase subunit I (cox1), and plastid rDNA SSU were PCR amplified and sequenced. Phylogenetic analyses based on cob, cox1, and the nuclear rRNA regions showed that D. miles was closely related to D. tripos and D. caudata while distinct from D. acuminata. Along with morphology the LSU and ITS1-5.8S-ITS2 molecular data confirmed that this population was D. miles var. indica. Furthermore, the result demonstrated that ITS1-5.8S-ITS2 fragment was the most effective region to distinguish D. miles from other Dinophysis species. Three distinct types of plastid rDNA sequences were detected, belonging to plastids of a cryptophyte, a haptophyte, and a cyanobacterium, respectively. This is the first documentation of three photosynthetic entities associated with a Dinophysis species. While the cyanobacterial sequence likely represented an ectosymbiont of the D. miles cells, the detection of the cryptophyte and haptophyte plastid sequences indicates that the natural assemblage of D. miles likely retain more than one type of plastids from its prey algae for temporary use in photosynthesis. The result, together with recent findings of plastid types in other Dinophysis species, suggests that more systematic research is required to understand the complex nutritional physiology of this genus of dinoflagellates.


Aquatic Toxicology | 2011

Arsenic bioaccumulation in a marine juvenile fish Terapon jarbua.

Wei Zhang; Liangmin Huang; Wen-Xiong Wang

Arsenic (As) is a ubiquitous toxic metalloid that is causing widespread public concern. Recent measurements have indicated that some marine fish in China might be seriously contaminated with As. Yet the biokinetics and bioaccumulation pathway of As in fish remain little understood. In this study, we employed a radiotracer technique to quantify the dissolved uptake, dietary assimilation and subsequent efflux of As(V) in a marine predatory fish, Terapon jarbua. The dissolved uptake of As showed a linear pattern over a range of dissolved concentrations from 0.5 to 50 μg L(-1), with a corresponding uptake rate constant of 0.0015 L g(-1)d(-1). The assimilation efficiencies (AEs) of dietary As were only 3.1-7.4% for fish fed with copepods, clams, prey fish, or artificial diets, and were much lower than the As that entered the trophically available metal fraction in the prey. The dietary AEs were independent of the As(V) concentrations in the artificial diets. The efflux rate constant of As in fish following the dietary exposure was 0.03 d(-1). Modeling calculations showed that dietary uptake could be the primary route for As bioaccumulation in fish, and the corresponding contributions of waterborne and dietary uptakes were related to the bioconcentration factor (BCF) of the prey and the ingestion rate of fish. This study demonstrates that As(V) has a low bioavailability to T. jarbua.

Collaboration


Dive into the Liangmin Huang's collaboration.

Top Co-Authors

Avatar

Yehui Tan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xingyu Song

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Qiang Lin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhixin Ke

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianqiang Yin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gang Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hui Huang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kaizhi Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huaxue Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianlin Zhang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge