Liangpo Liu
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Liangpo Liu.
Environment International | 2012
Liangpo Liu; Huaqiong Bao; Feng Liu; Jie Zhang; Heqing Shen
Phthalates are suspected of having adverse effects on androgen-regulated reproductive development in animals and may be toxic for human sperm. The purposes of our study were to investigate the general exposure of a Chinese reproductive age cohort to these ubiquitous pollutants and to assess their potential effect on semen quality. Six phthalate metabolites, monomethyl phthalate (MMP), monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), mono-2-ethylhexyl phthalate (MEHP), and mono-2-ethyl-5-oxohexyl phthalate (MEOHP) were measured in spot urines of 150 individuals recruited from a Chongqing, China, reproductive institute. The questionnaire and clinical data were evaluated, and the correlations of phthalate exposure and semen qualities like semen volume, sperm concentration, motility and sperm motion parameters, were determined by multiple logistic regression analysis. The creatinine adjusted average concentrations for MMP, MEP, MBP, MBzP, MEHP and MEOHP were 41.3, 300, 41.0, 0.78, 2.99 and 3.90 μg/g, respectively. After adjustment for age, body mass index (BMI), abstinence, smoking, drinking, and education, there was a borderline-significant dose-response relationship between MBP and sperm concentration, with odd ratios (ORs) 1.0, 6.8 and 12.0 for increasing exposure tertiles (p=0.05). Although the dose-response relationships for MMP and MEP versus sperm concentration were not significant, a significant positive correlation between MEP and straight-line velocity of sperm motion was observed. The present data may imply some effects of phthalate exposure on semen. However, due to the small sample size, our finding needs to be confirmed on a larger population.
Chemosphere | 2015
Jawad Mohmand; Syed Ali Musstjab Akber Shah Eqani; Mauro Fasola; Ambreen Alamdar; Irfan Mustafa; Nadeem Ali; Liangpo Liu; Siyuan Peng; Heqing Shen
We assessed the levels of potentially toxic trace metals, Zinc (Zn), Lead (Pb), Manganese (Mn), Copper (Cu), Nickel (Ni), Chromium (Cr), Cobalt (Co), and Cadmium (Cd), in dust, hair, nail and serum, sampled in rural, urban and industrial areas of Punjab, Pakistan. Trace metals occurrence in all samples, in descending order, was: Zn, Pb, Mn, Cu, Cr, Ni, Co, Cd. The samples from the urban areas showed significantly higher concentration of toxic trace metals (Zn, Ni, Cr, Co, Mn, and Cd) than those from industrial (which conversely had higher levels of Pb and Cu), and than samples from rural areas. Bioaccumulation patterns showed that dust exposure is one of the major routes into human body for Cd, Pb, Co, Mn and Cr, while the burden of Zn, Cu, and Ni can be more linked to dietary sources. The concentrations of trace metals in the samples from Punjab were comparable and/or higher than those reported worldwide. In many cases, the levels of Zn, Cr, Pb, Ni and Cd in hair and nail were beyond the ATSDR threshold guideline values that may cause some serious health effects. Hazard Index (HI) calculated for trace metal concentrations in the human population of Punjab points particularly to health risks from Cd (for children in urban and industrial areas) and from Pb (for all sub-groups).
Aquatic Toxicology | 2012
Chao Fang; Xinlong Wu; Qiansheng Huang; Yanyan Liao; Liangpo Liu; Ling Qiu; Heqing Shen; Sijun Dong
Perfluorooctane sulfonate (PFOS) is widely distributed in seawater. However, the effects of PFOS on important receptors involved in the toxicity of POPs have not been fully defined, especially for the embryonic stages of marine fish. In this study, we examined the transcriptional responses and PFOS accumulation in the marine medaka embryos at the early and late developmental stages of 4 and 10 dpf upon PFOS exposure (1, 4, and 16mg/L). PFOS accumulated in the embryos, and the embryonic burdens of PFOS at 10 dpf were markedly higher than those at 4 dpf. Moreover, thirteen genes involved in three important POPs-related receptor pathways, including ER, AHR and PPAR, were cloned and investigated. The mRNA expression levels of ERα and ERγ were not significantly altered, but the estrogenic marker genes were downregulated upon PFOS exposure at 4 dpf. Conversely, ERs and related marker genes all were significantly upregulated at 10 dpf. The expressions of ARNT and cyp1a were both upregulated at 4 dpf, while no obvious changes were detected at 10 dpf. The expressions of cyp19a and cyp19b were regulated by PFOS in a stage-specific manner. PFOS produced different effects on three isoforms of PPAR. PPARα and PPARβ were first inhibited at 4 dpf and were induced at 10 dpf. PFOS did not elicit a change in PPARγ expression at either stage. In conclusion, this study showed that PFOS has an estrogenic activity and endocrine-disruptive properties. Meanwhile, PFOS could elicit transcriptional responses on POPs-related pathways in a stage-specific manner.
Environmental Science & Technology | 2013
Heqing Shen; Weipan Xu; Jie Zhang; Minjian Chen; Francis L. Martin; Yankai Xia; Liangpo Liu; Sijun Dong; Yong-Guan Zhu
To investigate the hypothesis that general environmental arsenic (As) exposure can impair male fertility, we designed a case-control study examining possible correlations between the concentrations of different As species in urine [controls (n = 151) vs cases (n = 140)], urinary metabolic biomarkers [controls (n = 158) vs cases (n = 135)], and infertility characterized by poor semen quality. Regional participants were recruited sequentially from the affiliated hospitals of Nanjing Medical University. Elevated inorganic arsenate (Asi(V)) exposure was associated with infertility: in comparison with the first quartile, subjects with Asi(V) levels above the median were more likely to exhibit male idiopathic infertility with increasing adjusted odds ratios (AOR) of 4.9 [95% confidence interval (CI), 1.8-13.6] and 13.6 (95% CI, 4.8-38.6) at the third and fourth quartiles (P = 0.000 for trend), respectively. Other As species did not exhibit a significant dose-dependent correlation with infertility risk. Levels of urinary biomarkers correlated with both male infertility and Asi(V) concentrations [controls (n = 145) vs cases (n = 123)]; the latter correlation was independent of disease. These included acylcarnitines, aspartic acid, and hydroxyestrone, which were negatively associated with infertility, and uridine and methylxanthine, which were positively associated. In conclusion, for the first time we show that elevated urinary concentrations of Asi(V) from general As exposure are significantly associated with male infertility, and As species may exert toxicity via oxidative stress and sexual hormone disrupting mechanisms, as indicated by related biomarkers.
Toxicology | 2012
Meiping Tian; Siyuan Peng; Francis L. Martin; Jie Zhang; Liangpo Liu; Zhanlin Wang; Sijun Dong; Heqing Shen
Perfluorooctanoic acid (PFOA) is one of the most commonly used perfluorinated compounds. Being a persistent environmental pollutant, it can accumulate in human tissues via various exposure routes. PFOA may interfere in a toxic fashion on the immune system, liver, development, and endocrine systems. In utero human exposure had been associated with cord serum global DNA hypomethylation. In light of this, we investigated possible PFOA-induced DNA methylation alterations in L02 cells in order to shed light into its epigenetic-mediated mechanisms of toxicity in human liver. L02 cells were exposed to 5, 10, 25, 50 or 100 mg/L PFOA for 72h. Global DNA methylation levels were determined by LC/ESI-MS, glutathione-S-transferase Pi (GSTP) gene promoter DNA methylation was investigated by methylation-specific polymerase chain reaction (PCR) with bisulfite sequencing, and consequent mRNA expression levels were measured with quantitative real-time reverse transcriptase PCR. A dose-related increase of GSTP promoter methylation at the transcription factor specificity protein 1 (SP1) binding site was observed. However, PFOA did not significantly influence global DNA methylation; nor did it markedly alter the promoter gene methylation of p16 (cyclin-dependent kinase inhibitor 2A), ERα (estrogen receptor α) or PRB (progesterone receptor B). In addition, PFOA significantly elevated mRNA transcript levels of DNMT3A (which mediates de novo DNA methylation), Acox (lipid metabolism) and p16 (cell apoptosis). Considering the role of GSTP in detoxification, aberrant methylation may be pivotal in PFOA-mediated toxicity response via the inhibition of SP1 binding to GSTP promoter.
Environmental Science & Technology | 2014
Jie Zhang; Heqing Shen; Weipan Xu; Yankai Xia; Dana B. Barr; Xiaoli Mu; Xiaoxue Wang; Liangpo Liu; Qingyu Huang; Meiping Tian
Urinary biomonitoring provides the most accurate arsenic exposure assessment; however, to improve the risk assessment, arsenic-related metabolic biomarkers are required to understand the internal processes that may be perturbed, which may, in turn, link the exposure to a specific health outcome. This study aimed to investigate arsenic-related urinary metabolome changes and identify dose-dependent metabolic biomarkers as a proof-of-concept of the information that could be obtained by combining metabolomics and targeted analyses. Urinary arsenic species such as inorganic arsenic, methylarsonic acid, dimethylarsinic acid and arsenobetaine were quantified using high performance liquid chromatography (HPLC)-inductively coupled plasma-mass spectrometry in a Chinese adult male cohort. Urinary metabolomics was conducted using HPLC-quadrupole time-of-flight mass spectrometry. Arsenic-related metabolic biomarkers were investigated by comparing the samples of the first and fifth quintiles of arsenic exposure classifications using a partial least-squares discriminant model. After the adjustments for age, body mass index, smoking, and alcohol consumption, five potential biomarkers related to arsenic exposure (i.e., testosterone, guanine, hippurate, acetyl-N-formyl-5-methoxykynurenamine, and serine) were identified from 61 candidate metabolites; these biomarkers suggested that endocrine disruption and oxidative stress were associated with urinary arsenic levels. Testosterone, guanine, and hippurate showed a high or moderate ability to discriminate the first and fifth quintiles of arsenic exposure with area-under-curve (AUC) values of 0.89, 0.87, and 0.83, respectively; their combination pattern showed an AUC value of 0.91 with a sensitivity of 88% and a specificity of 80%. Arsenic dose-dependent AUC value changes were also observed. This study demonstrated that metabolomics can be used to investigate arsenic-related biomarkers of metabolic changes; the dose-dependent trends of arsenic exposure to these biomarkers may translate into the potential use of metabolic biomarkers in arsenic risk assessment. Since this was a proof-of-concept study, more research is needed to confirm the relationships we observed between arsenic exposure and biochemical changes.
Environmental Health | 2012
Weipan Xu; Huaqiong Bao; Feng Liu; Liangpo Liu; Yong-Guan Zhu; Jianwen She; Sijun Dong; Min Cai; Lianbing Li; Chuanhai Li; Heqing Shen
BackgroundRecent observations in in vitro and in vivo models suggest that arsenic (As) is an endocrine disruptor at environmentally-relevant levels. When exposed to As, male rats and mice show steroidogenic dysfunction that can lead to infertility. However, the possible effects of As on human male semen quality remain obscure.MethodsWe monitored the profile of As species in the urine of a reproductive-age human cohort and assessed its association with semen quality. Men (n = 96) were recruited in an infertility clinic from July 2009 to August 2010 in the Affiliated Hospital of Chongqing Institute for Population and Family Planning. Five urinary As species were analyzed by high-performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Clinical information on the semen volume, sperm concentration and motility was employed to catalogue and evaluate semen quality according to WHO guidelines. As species concentrations in addition to other continuous variables were dichotomized by the medians and modelled as categorical variables in order to explore using the binary logistic regression possible associations between As exposure and semen quality.ResultsUrinary concentrations (geometric mean ± SD, μg g-1 creatinine) of different As species were 7.49 (±24.8) for AsB, 20.9 (±13.7) for DMA, 2.77 (±3.33) for MMA, and 4.03 (±3.67) for Asi (AsiIII and AsiV). DMA concentrations above the median were significantly associated with below-reference sperm concentrations (P =0.02) after adjusting for age, body mass index (BMI), abstinence, smoking and drinking habits. In addition, smoking was positively associated with MMA.ConclusionReduced parameters in human semen quality are positively associated with As exposure in a reproductive-age Chinese cohort.
Environmental Health | 2015
Siyuan Peng; Liangpo Liu; Xueqin Zhang; Joachim Heinrich; Jie Zhang; Karl-Werner Schramm; Qingyu Huang; Meiping Tian; Syed Ali Musstjab Akber Shah Eqani; Heqing Shen
BackgroundEnvironmental pollutant exposure may play certain roles in the pathogenesis and progression of diabetes mellitus including gestational diabetes mellitus (GDM). We hypothesize that heavy metal exposure may trigger GDM during pregnancy. The objective of this study was to investigate the possible associations between selected heavy metal exposure and GDM risk.MethodsThis investigation is a retrospective case–control study nested within a cohort of 1359 pregnant women. These participants were recruited in Xiamen Maternity and Child Care Hospital, China, during June to July, 2012. All their newborns’ meconium samples were collected. By reviewing the antenatal care records, 166 GDM mothers were screened out from the 1359 participants; 137 of 166 GDM mothers offered their newborns’ meconium samples for the metal analysis. Those 137 mothers were set as the case group. Similarly, 294 healthy mothers without any gestational complication were initially screened out from the rest 1193 non-GDM mothers. 190 of the 294 healthy mothers offered their newborns’ meconium samples for the metal analysis. Those 190 mothers were set as the control group. Arsenic (As), mercury (Hg), lead (Pb), cadmium (Cd), and chromium (Cr) levels in these case–control meconium samples were measured by inductively coupled plasma mass spectrometry. The possible association between the metal levels and maternal GDM risk of studied subjects was assessed by binary logistic regression.ResultsGDM prevalence of 12.21% was observed in the investigated 1359 participants. The concentrations of As, Hg, Cr and Cd in studied cases were significantly higher (p < 0.05) than those of controls. After adjustments for maternal age, pre-pregnant body mass index, gravidity, parity, hepatitis B virus infection, and newborn sex, As, Cd and Cr were found to be positively associated with GDM prevalence in dose-dependent manners. Among them, As was detected in all samples and its levels associated the maternal GDM with the adjusted odds ratios of 3.28 [95% CI 1.24, 8.71], 3.35 [95% CI 1.28, 8.75] and 5.25 [95% CI 1.99, 13.86] for the 2nd, 3rd and 4th quartiles, respectively.ConclusionsThe present work implies that exposure to some of the selected metals (noticeably As) may contribute to maternal GDM risk during pregnancy.
Environmental Science & Technology | 2016
Jie Zhang; Liangpo Liu; Xiaofei Wang; Qingyu Huang; Meiping Tian; Heqing Shen
The general population is exposed to phthalates through various sources and routes. Integration of omics data and epidemiological data is a key step toward directly linking phthalate biomonitoring data with biological response. Urine metabolomics is a powerful tool to identify exposure biomarkers and delineate the modes of action of environmental stressors. The objectives of this study are to investigate the association between low-level environmental phthalate exposure and urine metabolome alteration in male population, and to unveil the metabolic pathways involved in the mechanisms of phthalate toxicity. In this retrospective cross-sectional study, we studied the urine metabolomic profiles of 364 male subjects exposed to low-level environmental phthalates. Di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) are the most widely used phthalates. ∑DEHP and MBP (the major metabolite of DBP) were associated with significant alteration of global urine metabolome in the male population. We observed significant increase in the levels of acetylneuraminic acid, carnitine C8:1, carnitine C18:0, cystine, phenylglycine, phenylpyruvic acid and glutamylphenylalanine; and meanwhile, decrease in the levels of carnitine C16:2, diacetylspermine, alanine, taurine, tryptophan, ornithine, methylglutaconic acid, hydroxyl-PEG2 and keto-PGE2 in high exposure group. The observations indicated that low-level environmental phthalate exposure associated with increased oxidative stress and fatty acid oxidation and decreased prostaglandin metabolism. Urea cycle, tryptophan and phenylalanine metabolism disruption was also observed. The urine metabolome disruption effects associated with ∑DEHP and MBP were similar, but not identical. The multibiomarker models presented AUC values of 0.845 and 0.834 for ∑DEHP and MBP, respectively. The predictive accuracy rates of established models were 81% for ΣDEHP and 73% for MBP. Our results suggest that low-level environmental phthalate exposure associates with urine metabolome disruption in male population, providing new insight into the early molecular events of phthalate exposure.
Journal of Proteome Research | 2014
Jie Zhang; Xiaoli Mu; Yankai Xia; Francis L. Martin; Wei Hang; Liangpo Liu; Meiping Tian; Qingyu Huang; Heqing Shen
Normozoospermic infertility has become a common and important health problem worldwide. We designed this metabolomic case-control study to investigate the possible mechanism and urinary biomarkers of normozoospermic infertility. Normozoospermic infertile cases (n = 71) and fertile controls (n = 47) were recruited. A urinary metabolome pattern could discriminate normozoospermic infertile cases from fertile controls. A total of 37 potential biomarkers were identified; these have functionally important roles in energy production, antioxidation, and hormone regulation in spermatogenesis. This gave rise to a combined biomarker pattern of leukotriene E4, 3-hydroxypalmitoylcarnitine, aspartate, xanthosine, and methoxytryptophan pointing to a diagnostic capability (AUC = 0.901, sensitivity = 85.7%, and specificity = 86.8%) in a ROC model; these markers may highlight keynote events of normozoospermic infertility. Stalled medium- and long-chain fatty acid metabolism with improved ketone body metabolism, plus decreased levels of malate and aspartate could result in citrate cycle alterations via a malate-aspartate shuttle in ATP generation in spermatogenesis. Inhibitory alterations in the normal hormone-secreting activity in spermatogenesis were suggested in normozoospermic infertility. Folate deficiency and oxidative stress may jointly impact infertile patients. The disruption of eicosanoid metabolism and xanthine oxidase system, which were tightly associated with energy metabolism and oxidative stress, was also a potential underlying mechanism. In addition, depression might be associated with normozoospermic infertility via neural activity-related metabolites. This study suggests that the urinary metabolome can be used to differentiate normozoospermic infertile men from fertile individuals. Potential metabolic biomarkers derived from these analyses might be used to diagnose what remains a somewhat idiopathic condition and provide functional insights into its pathogenesis.