Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liangyu Zheng is active.

Publication


Featured researches published by Liangyu Zheng.


Journal of Biotechnology | 2013

Stereoselective synthesis of caffeic acid amides via enzyme-catalyzed asymmetric aminolysis reaction

Peiliang Xiao; Suoqin Zhang; Huayu Ma; Aijun Zhang; Xiaoli Lv; Liangyu Zheng

In this study, a new method was developed to prepare enantiopure caffeic acid amides by enzyme-catalyzed asymmetric aminolysis reaction. Methoxymethyl chloride (MOMCl) was first introduced as a protective and esterified reagent to obtain the MOM-protected caffeic acid MOM ester 1d. Aminolysis reaction occurred between 1d and (R, S)-α-phenylethylamine in the presence of an immobilized lipase (Novozym 435) from Candida antarctica. Compared with the methyl-protected caffeic acid methyl ester 1c, 1d as substrate improved the lipase-catalyzed reaction rate by 5.5-fold. After Novozym 435-catalyzed aminolysis reaction was established, we evaluated the effects of synthesis parameters on the catalytic activity and enantioselectivity of Novozym 435. A reaction conversion rate of 25.5% and an E value of >100 were achieved under the following optimum conditions: reaction solvent, anhydrous isooctane; reaction temperature, 70°C; reaction time, 24h; ester-to-amine substrate molar ratio, 1:40; and enzyme additive amount, 40 mg. Kinetic and thermodynamic analyses were conducted to determine the main factors affecting enantiomeric discrimination. Novozym 435 still showed 80% of its initial activity after recycling five times. Highly optically pure caffeic acid amides with an enantiomeric excess of 98.5% were finally obtained by HCl deprotection. The established enzyme-catalyzed asymmetric aminolysis method in this study might be used to prepare other caffeic acid amides.


Biochemical and Biophysical Research Communications | 2008

Template enhanced activity of lipase accommodated in siliceous mesocellular foams.

Yanmei Zhang; Lifang Zhao; Jun Li; Huidong Zhang; Liangyu Zheng; Shugui Cao; Can Li

Lipases were adsorbed in siliceous mesocellular foams containing different amounts of residual template in the nanopores. It is found that the hydrolytic activities of the adsorbed lipases are increased with increasing the contents of template in the mesopores. The triacetin hydrolytic activity of the lipase adsorbed in the foam containing 46% of template can be 13 times higher than that of the lipase adsorbed in the foam without template in the nanopores, and its specific activity is about three times higher than that of the free lipase, showing the hyperactivation effect on lipase resulting from the interaction between the lipase and the surfactant in the nanopores. The immobilized lipase cross-linked with glutaraldehyde can retain up to 88% of its original activity after six hydrolysis reaction test. This work provides a new strategy to enhance the activity of immobilized lipase in mesoporous materials.


Enzyme and Microbial Technology | 2016

First Novozym 435 lipase-catalyzed Morita–Baylis–Hillman reaction in the presence of amides

Xuemei Tian; Suoqin Zhang; Liangyu Zheng

The first Novozym 435 lipase-catalyzed Morita-Baylis-Hillman (MBH) reaction with amides as co-catalyst was realized. Results showed that neither Novozym 435 nor amide can independently catalyze the reaction. This co-catalytic system that used a catalytic amount of Novozym 435 with a corresponding amount of amide was established and optimized. The MBH reaction strongly depended on the structure of aldehyde substrate, amide co-catalyst, and reaction additives. The optimized reaction yield (43.4%) was achieved in the Novozym 435-catalyzed MBH reaction of 2, 4-dinitrobenzaldehyde and cyclohexenone with isonicotinamide as co-catalyst and β-cyclodextrin as additive only in 2 days. Although enantioselectivity of Novozym 435 was not found, the results were still significant because an MBH reaction using lipase as biocatalyst was realized for the first time.


Biocatalysis and Biotransformation | 2011

Resolution of 2-octanol via immobilized Pseudomonas sp. lipase in organic medium

L. F. Zhao; Liangyu Zheng

Abstract Pseudomonas sp. lipase (PSL) immobilization was performed using three different protocols. Lipase immobilized on Diaion HP20 (HP20-PSL) exhibited the highest catalytic activity and stability in the kinetic resolution of racemic 2-octanol. The reaction rate of HP20-PSL was approximately 20 times higher than that of free PSL and the residual activities of HP20-PSL and free PSL were respectively 84% and 19% after incubation in the reaction medium for 72 h. A study of the effect of different reaction parameters on HP20-PSL-catalyzed resolution of (R,S)-2octanol showed that the optimal water content of the immobilized matrix and the optimal molar ratio of vinyl acetate to 2-octanol were 60 ± 5% and 2.5:1, respectively. Under the optimized reaction conditions, (S)-2-octanol of high optically purity (enantiomeric excess > 99%) could be recovered at 53% conversion rate, and HP20-PSL could be reused for ten cycles without significant decrease in its activity and enantioselectivity.


Enzyme and Microbial Technology | 2018

Co-immobilization of enoate reductase with a cofactor-recycling partner enzyme

Han Li; Wenhua Xiao; Panpan Xie; Liangyu Zheng

Herein we established co-immobilized methods for enoate reductases (ERs) and glucose dehydrogenase (GDH), forming a cofactor regeneration system. In cross-linked enzyme aggregates (CLEAs), ammonium sulfate and oxidized dextran were selected as a precipitant and a cross-linker, respectively. In biomimetic immobilization (BI), ER-GDH-silica particles (ER-GDH-SPs) were rapidly formed through a one-step approach by using a silicic acid precursor. Under the optimal conditions, the ER activity recovery in ER-GDH-CLEAs and ER-GDH-SPs were 44.9±1.8% and 44.5±2.1%, and the immobilization efficiency was 93.5±1.2% and 92.4±1.2%, respectively. ER-GDH-CLEAs and ER-GDH-SPs exhibit excellent thermal and pH stability, and superior reusability. The activity of ER-GDH-SPs toward the substrate is also better than that of free ER and GDH in reduction of 4-(4-Methoxyphenyl)-3-buten-2-one. This study introduces simple and inexpensive co-immobilization strategies to construct novel and efficient ER-GDH-CLEAs and ER-GDH-SPs with high activity and stability.


Journal of Molecular Modeling | 2012

Study on the enantioselectivity inhibition mechanism of acetyl-coenzyme A carboxylase toward haloxyfop by homology modeling and MM-PBSA analysis

Jin Tao; Guirong Zhang; Aijun Zhang; Liangyu Zheng; Shugui Cao

Acetyl-coenzyme A carboxylase (ACCase) has been identified as one of the most important targets of herbicide Aryloxyphenoxypropionates (APPs). ACCase shows different enantioselectivity toward APPs, and only (R)-enantiomers of APPs have the herbicidal activity. In order to deeply understand the enantioselective recognition mechanism of ACCase, (R)-haloxyfop, which is a typical commercial herbicide from APPs, is selected and the relative binding free energy between ACCase and (R)-haloxyfop is investigated and compared with that between ACCase and (S)-haloxyfop by homology modeling and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method. Further free energy analysis reveals that the preference of ACCase toward (R)-haloxyfop is mainly driven by Van der Waals interaction. The analysis of the interaction between the active site residues of ACCase CT domain and (R)-haloxyfop shows the van der Waals interactions have a close relationship with the addition effect of each residue. An understanding of the enantioselective recognition mechanism between ACCase and haloxyfop is desirable to discover novel chiral herbicides.


Journal of Biotechnology | 2017

Simultaneously achieve soluble expression and biomimetic immobilization of Candida antarctica lipase B by introducing polyamine tags

Xiaoxue Zhou; Yu Han; Zheng Lv; Xuemei Tian; Han Li; Panpan Xie; Liangyu Zheng

Polyamine tags fused in Candida antarctica lipase B (CalB) can help achieve high soluble expression of CalB in E. coli and can directly mediate silicification, which leads to rapid formation of a CalB-silica particle complex through a one-step approach. After optimization experiments, the fused lipase CalB tagged with 6-histidine at the N terminal and 10-lysine at the C terminal (6His-CalB-10Lys) is effectively expressed with high solubility (0.1mg/mL) and specific activity (10.1U/mg), and easily cross-linked in silica particles with a high immobilization efficiency of 96.8% and activity recovery of 81.5%. The immobilized lipase 6His-CalB-10Lys exhibits excellent performance at broad temperature ranges, high thermal and storage stabilities, and superior reusability. Michaelis-Menten kinetics indicates that the affinity and enantioselectivity of the free and immobilized 6His-CalB-10Lys toward the substrate are better than that of commercial Novozym 435 in enantioselective resolution of (S)-N-(2-ethyl-6-methylphenyl) alanine ((S)-NEMPA). The strategies described in this paper are useful for the facile expression and construction of diverse enzyme systems with high efficiency and excellent recyclability.


Biocatalysis and Biotransformation | 2012

Resolution of N-(2-ethyl-6-methylphenyl) alanine by using microgel beads containing Pseudomonas cepacia lipase

Xuemei Tian; Guirong Zhang; Xiaoli Lü; Aijun Zhang; Jian Lin; Liangyu Zheng; Suoqin Zhang; Shugui Cao

Abstract Pseudomonas cepacia lipase (PCL) was immobilized in alginate microgel beads by electrostatic dispersion. The high electrical potential applied in the immobilization process could significantly decrease the droplet size. The optimum conditions for lipase immobilization were 2% (w/v) alginate, 100 mM CaCl2, 8 mg/mL enzyme, 4 kV electrical potential and 200 μm mean bead size. Under these conditions, 78.2 U/g of immobilized PCL activity was obtained with 39.1% retained activity and 57.2% immobilization efficiency. The immobilized PCL (PCL-CA) was subsequently used in the enantioselective hydrolysis of (R, S)-N-(2-ethyl-6-methylphenyl) alanine methyl ester. Although PCL-CA exhibited slightly lower activity than free PCL, it preserved the high enantioselectivity (E-value > 200), which afforded enantiomerically pure (R)-acid (99% e.e.p). Furthermore, PCL-CA exhibited higher thermal stability, storage and medium stability than that of free PCL. Batch-wise operational stability studies demonstrated that PCL-CA retained its initial activity for at least 10 cycles of hydrolysis.


Chemical Research in Chinese Universities | 2008

Cloning, Expression and Purification of Wheat Acetyl-CoA Carboxylases CT Domain in E. coil

Ruijian Wang; Xueying Yang; Liangyu Zheng; Ye Yang; Gui Gao; Shugui Cao

The entire gene of carboxyltransferase(CT) domain of acetyl-CoA carboxylase(ACCase) from Chinese Spring wheat(CSW) plastid was cloned firstly, and the 2.3 kb gene was inserted into PET28a+ vector and expressed in E. coil in a soluble state. The (His)6 fusion protein was identified by SDS-PAGE and Western blot. The recombinant protein was purified by affinity chromatography, and the calculated molecular mass(Mr) was 88000. The results of the sequence analysis indicate that the cloned gene(GeneBank accession No. EU124675) was a supplement and revision of the reported ACCase CT partial cDNA from Chinese Spring wheat plastid. The recombinant protein will be significant for us to investigate the recognizing mechanism between ACCase and herbicides, and further to screen new herbicides.


Biocatalysis and Biotransformation | 2007

Resolution of N-(2-ethyl-6-methylphenyl) alanine catalyzed by Lipase B from Candida antarctica

Liangyu Zheng; Suoqin Zhang; Gui Gao; Lifang Zhao; Fei Jia; Shugui Cao

A biotransformation process has been developed for the production of (S)-N-(2-ethyl-6-methylphenyl) alanine by enantioselective hydrolysis of racemic methyl ester in the presence of Candida antarctica lipase B (CAL-B). However, the enantioselectivity of CAL-B towards the resolution is not high enough to obtain enantiomerically pure product. In order to improve the enantioselectivity of the enzyme, the effects of surfactants on CAL-B-catalyzed hydrolysis were tested. The results suggest that surfactants can influence the microenvironment of the enzyme, and the addition of Tween-80, in particular, to the reaction medium markedly enhanced the selectivity of CAL-B towards the substrate used, with the enantiomeric ratio (E-value) increasing from 11.3 to 60.1.

Collaboration


Dive into the Liangyu Zheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge