Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liangzhong Lim is active.

Publication


Featured researches published by Liangzhong Lim.


PLOS Biology | 2016

ALS-Causing Mutations Significantly Perturb the Self-Assembly and Interaction with Nucleic Acid of the Intrinsically Disordered Prion-Like Domain of TDP-43.

Liangzhong Lim; Yuanyuan Wei; Yimei Lu; Jianxing Song

TAR-DNA-binding protein-43 (TDP-43) C-terminus encodes a prion-like domain widely presented in RNA-binding proteins, which functions to form dynamic oligomers and also, amazingly, hosts most amyotrophic lateral sclerosis (ALS)-causing mutations. Here, as facilitated by our previous discovery, by circular dichroism (CD), fluorescence and nuclear magnetic resonance (NMR) spectroscopy, we have successfully determined conformations, dynamics, and self-associations of the full-length prion-like domains of the wild type and three ALS-causing mutants (A315E, Q331K, and M337V) in both aqueous solutions and membrane environments. The study decodes the following: (1) The TDP-43 prion-like domain is intrinsically disordered only with some nascent secondary structures in aqueous solutions, but owns the capacity to assemble into dynamic oligomers rich in β-sheet structures. By contrast, despite having highly similar conformations, three mutants gained the ability to form amyloid oligomers. The wild type and three mutants all formed amyloid fibrils after incubation as imaged by electron microscopy. (2) The interaction with nucleic acid enhances the self-assembly for the wild type but triggers quick aggregation for three mutants. (3) A membrane-interacting subdomain has been identified over residues Met311-Gln343 indispensable for TDP-43 neurotoxicity, which transforms into a well-folded Ω-loop-helix structure in membrane environments. Furthermore, despite having very similar membrane-embedded conformations, three mutants will undergo further self-association in the membrane environment. Our study implies that the TDP-43 prion-like domain appears to have an energy landscape, which allows the assembly of the wild-type sequence into dynamic oligomers only under very limited condition sets, and ALS-causing point mutations are sufficient to remodel it to more favor the amyloid formation or irreversible aggregation, thus supporting the emerging view that the pathologic aggregation may occur via the exaggeration of functionally important assemblies. Furthermore, the coupled capacity of TDP-43 in aggregation and membrane interaction may critically account for its high neurotoxicity, and therefore its decoupling may represent a promising therapeutic strategy to treat TDP-43 causing neurodegenerative diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2014

TDP-43 N terminus encodes a novel ubiquitin-like fold and its unfolded form in equilibrium that can be shifted by binding to ssDNA

Haina Qin; Liangzhong Lim; Yuanyuan Wei; Jianxing Song

Significance Transactivation response element (TAR) DNA-binding protein 43 (TDP-43) inclusion is a histological hallmark of FTLD-TDP and amyotrophic lateral sclerosis. Its N terminus was just revealed as a double-edged sword indispensable for both physiology and proteinopathy, but its structure remains unknown due to aggregation. Here we revealed (i) the TDP-43 N terminus encodes a well-folded structure in equilibrium with its unfolded form; (ii) despite previous failure in detecting sequence homology to ubiquitin, the folded state assumes a novel ubiquitin-like fold; and (iii) this ubiquitin-like fold could bind ssDNA, thus representing the first capable of directly binding nucleic acid. Taken together, our results provide a molecular mechanism rationalizing the functional dichotomy of TDP-43 and further imply one therapeutic strategy for TDP-43–causing diseases. Transactivation response element (TAR) DNA-binding protein 43 (TDP-43) is the principal component of ubiquitinated inclusions characteristic of most forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia-frontotemporal lobar degeneration with TDP-43–positive inclusions (FTLD-TDP), as well as an increasing spectrum of other neurodegenerative diseases. Previous structural and functional studies on TDP-43 have been mostly focused on its recognized domains. Very recently, however, its extreme N terminus was identified to be a double-edged sword indispensable for both physiology and proteinopathy, but thus far its structure remains unknown due to the severe aggregation. Here as facilitated by our previous discovery that protein aggregation can be significantly minimized by reducing salt concentrations, by circular dichroism and NMR spectroscopy we revealed that the TDP-43 N terminus encodes a well-folded structure in concentration-dependent equilibrium with its unfolded form. Despite previous failure in detecting any sequence homology to ubiquitin, the folded state was determined to adopt a novel ubiquitin-like fold by the CS-Rosetta program with NMR chemical shifts and 78 unambiguous long-range nuclear Overhauser effect (NOE) constraints. Remarkably, this ubiquitin-like fold could bind ssDNA, and the binding shifted the conformational equilibrium toward reducing the unfolded population. To the best of our knowledge, the TDP-43 N terminus represents the first ubiquitin-like fold capable of directly binding nucleic acid. Our results provide a molecular mechanism rationalizing the functional dichotomy of TDP-43 and might also shed light on the formation and dynamics of cellular ribonucleoprotein granules, which have been recently linked to ALS pathogenesis. As a consequence, one therapeutic strategy for TDP-43–causing diseases might be to stabilize its ubiquitin-like fold by ssDNA or designed molecules.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Disruption of FAT10–MAD2 binding inhibits tumor progression

Steven Setiawan Theng; Wei Wang; Way-Champ Mah; Cheryl Chan; Jingli Zhuo; Yun Gao; Haina Qin; Liangzhong Lim; Samuel S. Chong; Jianxing Song; Caroline G. Lee

Significance FAT10, a ubiquitin-like modifier, is an oncogene that interacts with mitotic arrest-deficient 2 (MAD2) and confers cellular malignancy. Here we identified the MAD2-binding residues of FAT10 and determined the first solution structure, to our knowledge, of the first FAT10 ubiquitin-like domain. Importantly, we demonstrated the proof-of-mechanism for a novel and specific drug-targeting strategy that entails the specific inhibition of the pathological activity of a therapeutic target but not its reported physiological function, thus minimizing undesirable side effects: Abrogation of the FAT10–MAD2 interaction curtailed tumor progression without affecting FAT10’s interaction with its other known physiological binding partners. This study presents a paradigm for drug targeting and paves the way for the development of a novel small-molecule anticancer inhibitor targeting the MAD2-binding interface of FAT10. FAT10 (HLA-F-adjacent transcript 10) is a ubiquitin-like modifier that is commonly overexpressed in various tumors. It was found to play a role in mitotic regulation through its interaction with mitotic arrest-deficient 2 (MAD2). Overexpression of FAT10 promotes tumor growth and malignancy. Here, we identified the MAD2-binding interface of FAT10 to be located on its first ubiquitin-like domain whose NMR structure thus was determined. We further proceeded to demonstrate that disruption of the FAT10–MAD2 interaction through mutation of specific MAD2-binding residues did not interfere with the interaction of FAT10 with its other known interacting partners. Significantly, ablation of the FAT10–MAD2 interaction dramatically limited the promalignant capacity of FAT10, including promoting tumor growth in vivo and inducing aneuploidy, proliferation, migration, invasion, and resistance to apoptosis in vitro. Our results strongly suggest that the interaction of FAT10 with MAD2 is a key mechanism underlying the promalignant property of FAT10 and offer prospects for the development of anticancer strategies.


BMC Biophysics | 2012

Protein dynamics at Eph receptor-ligand interfaces as revealed by crystallography, NMR and MD simulations

Haina Qin; Liangzhong Lim; Jianxing Song

BackgroundThe role of dynamics in protein functions including signal transduction is just starting to be deciphered. Eph receptors with 16 members divided into A- and B- subclasses are respectively activated by 9 A- and B-ephrin ligands. EphA4 is the only receptor capable of binding to all 9 ephrins and small molecules with overlapped interfaces.ResultsWe first determined the structures of the EphA4 ligand binding domain (LBD) in two crystals of P1 space group. Noticeably, 8 EphA4 molecules were found in one asymmetric unit and consequently from two crystals we obtained 16 structures, which show significant conformational variations over the functionally critical A-C, D-E, G-H and J-K loops. The 16 new structures, together with previous 9 ones, can be categorized into two groups: closed and open forms which resemble the uncomplexed and complexed structures of the EphA4 LBD respectively. To assess whether the conformational diversity over the loops primarily results from the intrinsic dynamics, we initiated 30-ns molecular dynamics (MD) simulations for both closed and open forms. The results indicate that the loops do have much higher intrinsic dynamics, which is further unravelled by NMR H/D exchange experiments. During simulations, the open form has the RMS deviations slightly larger than those of the closed one, suggesting the open form may be less stable in the absence of external contacts. Furthermore, no obvious exchange between two forms is observed within 30 ns, implying that they are dynamically separated.ConclusionsOur study provides the first experimental and computational result revealing that the intrinsic dynamics are most likely underlying the conformational diversity observed for the EphA4 LBD loops mediating the binding affinity and specificity. Interestingly, the open conformation of the EphA4 LBD is slightly unstable in the absence of it natural ligand ephrins, implying that the conformational transition from the closed to open has to be driven by the high-affinity interaction with ephrins because the weak interaction with small molecule was found to be insufficient to trigger the transition. Our results therefore highlight the key role of protein dynamics in Eph-ephrin signalling and would benefit future design of agonists/antagonists targeting Eph receptors.


PLOS ONE | 2011

Structural, Stability, Dynamic and Binding Properties of the ALS-Causing T46I Mutant of the hVAPB MSP Domain as Revealed by NMR and MD Simulations

Shixiong Lua; Haina Qin; Liangzhong Lim; Jiahai Shi; Garvita Gupta; Jianxing Song

T46I is the second mutation on the hVAPB MSP domain which was recently identified from non-Brazilian kindred to cause a familial amyotrophic lateral sclerosis (ALS). Here using CD, NMR and molecular dynamics (MD) simulations, we characterized the structure, stability, dynamics and binding capacity of the T46I-MSP domain. The results reveal: 1) unlike P56S which we previously showed to completely eliminate the native MSP structure, T46I leads to no significant disruption of the native secondary and tertiary structures, as evidenced from its far-UV CD spectrum, as well as Cα and Cβ NMR chemical shifts. 2) Nevertheless, T46I does result in a reduced thermodynamic stability and loss of the cooperative urea-unfolding transition. As such, the T46I-MSP domain is more prone to aggregation than WT at high protein concentrations and temperatures in vitro, which may become more severe in the crowded cellular environments. 3) T46I only causes a 3-fold affinity reduction to the Nir2 peptide, but a significant elimination of its binding to EphA4. 4) EphA4 and Nir2 peptide appear to have overlapped binding interfaces on the MSP domain, which strongly implies that two signaling networks may have a functional interplay in vivo. 5) As explored by both H/D exchange and MD simulations, the MSP domain is very dynamic, with most loop residues and many residues on secondary structures highly fluctuated or/and exposed to bulk solvent. Although T46I does not alter overall dynamics, it does trigger increased dynamics of several local regions of the MSP domain which are implicated in binding to EphA4 and Nir2 peptide. Our study provides the structural and dynamic understanding of the T46I-causing ALS; and strongly highlights the possibility that the interplay of two signaling networks mediated by the FFAT-containing proteins and Eph receptors may play a key role in ALS pathogenesis.


PLOS ONE | 2015

NMR and MD Studies Reveal That the Isolated Dengue NS3 Protease Is an Intrinsically Disordered Chymotrypsin Fold Which Absolutely Requests NS2B for Correct Folding and Functional Dynamics.

Garvita Gupta; Liangzhong Lim; Jianxing Song

Dengue genome encodes a two component protease complex (NS2B-NS3pro) essential for the viral maturation/infectivity, thus representing a key drug target. Previously, due to its “complete insolubility”, the isolated NS3pro could not be experimentally studied and it remains elusive what structure it adopts without NS2B and why NS2B is indispensable. Here as facilitated by our previous discovery, the isolated NS3pro has been surprisingly deciphered by NMR to be the first intrinsically-disordered chymotrypsin-like fold, which exists in a loosely-packed state with non-native long-range interactions as revealed by paramagnetic relaxation enhancement (PRE). The disordered NS3pro appears to be needed for binding a human host factor to trigger the membrane remodeling. Moreover, we have in vitro refolded the NS3pro in complex with either NS2B (48–100) or the full-length NS2B (1–130) anchored into the LMPC micelle, and the two complexes have similar activities but different dynamics. We also performed molecular dynamics (MD) simulations and the results revealed that NS2B shows the highest structural fluctuations in the complex, thus providing the dynamic basis for the observation on its conformational exchange between open and closed states. Remarkably, the NS2B cofactor plays a central role in maintaining the correlated motion network required for the catalysis as we previously decoded for the SARS 3CL protease. Indeed, a truncated NS2B (48–100;Δ77–84) with the flexible loop deleted is able to trap the NS2B-NS3pro complex in a highly dynamic and catalytically-impotent state. Taken together, our study implies potential strategies to perturb the NS2B-NS3pro interface for design of inhibitors for treating dengue infection.


Biochimica et Biophysica Acta | 2015

Mechanism for transforming cytosolic SOD1 into integral membrane proteins of organelles by ALS-causing mutations

Liangzhong Lim; Xiaowen Lee; Jianxing Song

Mutations in superoxide dismutase 1 (SOD1) cause familial amyotrophic lateral sclerosis (FALS), while wild-type SOD1 has been implicated in sporadic ALS (SALS). SOD1 mutants are now recognized to acquire one or more toxicities that include their association with mitochondrial and endoplasmic reticulum membranes but the underlying structural mechanism remains unknown. Here we determine NMR conformations of both wild-type and a truncation mutant (L126Z) of SOD1 in aqueous solution and a membrane environment. The truncation mutant (which causes FALS at very low levels, indicating its elevated toxicity) is highly unstructured in solution, failing to adopt the β-barrel SOD1 native structure. Wild-type SOD1 is also highly unstructured upon reduction of disulfides and depletion of zinc. Most remarkably, both mutant and wild type adopt similar, highly-helical conformations in a membrane environment. Thus, either truncation or depletion of zinc is sufficient to eliminate the native β-barrel structure, and transform cytosolic SOD1 into membrane proteins energetically driven by forming amphiphilic helices in membranes. That zinc-deficiency is sufficient to produce a similar transformation in wild-type SOD1 implies that the wild-type and FALS-linked SOD1 mutants may trigger ALS by a common mechanism.


ACS Chemical Biology | 2015

Dynamic principle for designing antagonistic/agonistic molecules for EphA4 receptor, the only known ALS modifier.

Haina Qin; Liangzhong Lim; Jianxing Song

Additional to involvement in diverse physiological and pathological processes such as axon regeneration, synaptic plasticity, and cancers, EphA4 receptor has been recently identified as the only amyotrophic lateral sclerosis (ALS) modifier. Previously, we found that two small molecules bind the same EphA4 channel at almost equivalent affinities but mysteriously trigger opposite signaling outputs: one activated but another inhibited. Here, we determined the solution structure of the 181-residue EphA4 LBD, which represents the first for 16 Eph receptors. Further NMR dynamic studies deciphered that the agonistic and antagonistic effects of two small molecules are dynamically driven, which are achieved by oppositely modulating EphA4 dynamics. Consequently, in design of drugs to target EphA4, the dynamic requirement also needs to be satisfied in addition to the classic criteria. For example, to increase the survival of ALS patients by inhibiting EphA4, the drugs must enhance, or at least not suppress, the EphA4 dynamics.


PLOS Computational Biology | 2011

Dynamically-driven inactivation of the catalytic machinery of the SARS 3C-like protease by the N214A mutation on the extra domain.

Jiahai Shi; Nanyu Han; Liangzhong Lim; Shixiong Lua; J. Sivaraman; Lushan Wang; Yuguang Mu; Jianxing Song

Despite utilizing the same chymotrypsin fold to host the catalytic machinery, coronavirus 3C-like proteases (3CLpro) noticeably differ from picornavirus 3C proteases in acquiring an extra helical domain in evolution. Previously, the extra domain was demonstrated to regulate the catalysis of the SARS-CoV 3CLpro by controlling its dimerization. Here, we studied N214A, another mutant with only a doubled dissociation constant but significantly abolished activity. Unexpectedly, N214A still adopts the dimeric structure almost identical to that of the wild-type (WT) enzyme. Thus, we conducted 30-ns molecular dynamics (MD) simulations for N214A, WT, and R298A which we previously characterized to be a monomer with the collapsed catalytic machinery. Remarkably, three proteases display distinctive dynamical behaviors. While in WT, the catalytic machinery stably retains in the activated state; in R298A it remains largely collapsed in the inactivated state, thus implying that two states are not only structurally very distinguishable but also dynamically well separated. Surprisingly, in N214A the catalytic dyad becomes dynamically unstable and many residues constituting the catalytic machinery jump to sample the conformations highly resembling those of R298A. Therefore, the N214A mutation appears to trigger the dramatic change of the enzyme dynamics in the context of the dimeric form which ultimately inactivates the catalytic machinery. The present MD simulations represent the longest reported so far for the SARS-CoV 3CLpro, unveiling that its catalysis is critically dependent on the dynamics, which can be amazingly modulated by the extra domain. Consequently, mediating the dynamics may offer a potential avenue to inhibit the SARS-CoV 3CLpro.


Biochemical and Biophysical Research Communications | 2013

NMR binding and crystal structure reveal that intrinsically-unstructured regulatory domain auto-inhibits PAK4 by a mechanism different from that of PAK1

Wei Wang; Liangzhong Lim; Yohendran Baskaran; Ed Manser; Jianxing Song

Six human PAK members are classified into groups I (PAKs 1-3) and II (PAK4-6). Previously, only group I PAKs were thought to be auto-inhibited but very recently PAK4, the prototype of group II PAKs, has also been shown to be auto-inhibited by its N-terminal regulatory domain. However, the complete auto-inhibitory domain (AID) sequence remains undefined and the mechanism underlying its auto-inhibition is largely elusive. Here, the N-terminal regulatory domain of PAK4 sufficient for auto-inhibiting and binding Cdc42/Rac was characterized to be intrinsically unstructured, but nevertheless we identified the entire AID sequence by NMR. Strikingly, an AID peptide was derived by deleting the binding-unnecessary residues, which has a Kd of 320 nM to the PAK4 catalytic domain. Consequently, the PAK4 crystal structure complexed with the entire AID has been determined, which reveals that the complete kinase cleft is occupied by 20 AID residuescomposed of an N-terminal α-helix and a previously-identified pseudosubstrate motif, thus achieving auto-inhibition. Our study reveals that PAK4 is auto-inhibited by a novel mechanism which is completely different from that for PAK1, thus bearing critical implications for design of inhibitors specific for group II PAKs.

Collaboration


Dive into the Liangzhong Lim's collaboration.

Top Co-Authors

Avatar

Jianxing Song

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Haina Qin

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Yimei Lu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Yuanyuan Wei

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jian Kang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Garvita Gupta

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jiahai Shi

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Amrita Roy

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Lu Wang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Shagun Srivastava

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge