Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lianhai Zhang is active.

Publication


Featured researches published by Lianhai Zhang.


Clinical Cancer Research | 2013

FGFR2 Gene Amplification in Gastric Cancer Predicts Sensitivity to the Selective FGFR Inhibitor AZD4547

Liang Xie; Xinying Su; Lin Zhang; Xiaolu Yin; Lili Tang; Xiuhua Zhang; Yanping Xu; Zeren Gao; Kunji Liu; Minhua Zhou; Beirong Gao; Danping Shen; Lianhai Zhang; Jiafu Ji; Paul R. Gavine; Jingchuan Zhang; Elaine Kilgour; Xiaolin Zhang; Qunsheng Ji

Purpose: FGFR gene aberrations are associated with tumor growth and survival. We explored the role of FGFR2 amplification in gastric cancer and the therapeutic potential of AZD4547, a potent and selective ATP-competitive receptor tyrosine kinase inhibitor of fibroblast growth factor receptor (FGFR)1–3, in patients with FGFR2-amplified gastric cancer. Experimental Design: Array-comparative genomic hybridization and FISH were used to identify FGFR2 amplification in gastric cancer patient tumor samples. The effects of FGFR2 modulation were investigated in gastric cancer cells with FGFR2 amplification and in patient-derived gastric cancer xenograft (PDGCX) models using two approaches: inhibition with AZD4547 and short hairpin RNA (shRNA) knockdown of FGFR2. Results: Amplification of the FGFR2 gene was identified in a subset of Chinese and Caucasian patients with gastric cancer. Gastric cancer cell lines SNU-16 and KATOIII, carrying the amplified FGFR2 gene, were extremely sensitive to AZD4547 in vitro with GI50 values of 3 and 5 nmol/L, respectively. AZD4547 effectively inhibited phosphorylation of FGFR2 and its downstream signaling molecules and induced apoptosis in SNU-16 cells. Furthermore, inhibition of FGFR2 signaling by AZD4547 resulted in significant dose-dependent tumor growth inhibition in FGFR2-amplified xenograft (SNU-16) and PDGCX models (SGC083) but not in nonamplified models. shRNA knockdown of FGFR2 similarly inhibited tumor growth in vitro and in vivo. Finally, compared with monotherapy, we showed enhancement of in vivo antitumor efficacy using AZD4547 in combination with chemotherapeutic agents. Conclusion: FGFR2 pathway activation is required for driving growth and survival of gastric cancer carrying FGFR2 gene amplification both in vitro and in vivo. Our data support therapeutic intervention with FGFR inhibitors, such as AZD4547, in patients with gastric cancer carrying FGFR2 gene amplification. Clin Cancer Res; 19(9); 2572–83. ©2013 AACR.


British Journal of Cancer | 2014

Deregulated microRNAs in gastric cancer tissue-derived mesenchymal stem cells: novel biomarkers and a mechanism for gastric cancer.

Meilin Wang; C Zhao; H Shi; B Zhang; Lianhai Zhang; X Zhang; S Wang; X Wu; T Yang; F Huang; J Cai; Q Zhu; W Zhu; H Qian; W Xu

Background:MicroRNAs (miRNAs) are involved in gastric cancer development and progression. However, the expression and role of miRNAs in gastric cancer stromal cells are still unclear.Methods:The miRNAs differentially expressed in gastric cancer tissue-derived mesenchymal stem cells (GC-MSCs) relative to adjacent non-cancerous tissue-derived MSCs (GCN-MSCs) and in cancer tissues relative to adjacent non-cancerous tissues were screened using miRNA microarray and validated by quantitative RT–PCR. The impact of GC-MSCs on HGC-27 cells was observed in vitro using colony formation and transwell assays, and these cells were subcutaneously co-injected into mice to assess tumour growth in vivo. Exogenous downregulation of miR-221 expression in cells was achieved using an miRNA inhibitor.Results:miR-214, miR-221 and miR-222 were found to be commonly upregulated in GC-MSCs and cancer tissues. Their levels were tightly associated with lymph node metastasis, venous invasion and the TNM stage. Gastric cancer tissue-derived mesenchymal stem cells significantly promoted HGC-27 growth and migration and increased the expression of miR-221 via paracrine secretion, and the targeted inhibition of miR-221 in GC-MSCs could block its tumour-supporting role. GC-MSC-derived exosomes were found to deliver miR-221 to HGC-27 cells and promoted their proliferation and migration.Conclusions:Gastric cancer tissue-derived mesenchymal stem cells favour gastric cancer progression by transferring exosomal miRNAs to gastric cancer cells, thus providing a novel mechanism for the role of GC-MSCs and new biomarkers for gastric cancer.


Scientific Reports | 2013

A subset of gastric cancers with EGFR amplification and overexpression respond to cetuximab therapy

Lianhai Zhang; Jie Yang; Jie Cai; Xiaoming Song; Jianyun Deng; Xuesong Huang; Dawei Chen; Mengmeng Yang; Jean-Pierre Wery; Shuangxi Li; Aiwen Wu; Z. Li; Zhongwu Li; Liu Yr; Yiyou Chen; Qixiang Li; Jiafu Ji

A preclinical trial identified 4 of 20 (20%) gastric cancer (GC) patient-derived xenografts responded to cetuximab. Genome-wide profiling and additional investigations revealed that high EGFR mRNA expression and immunohistochemistry score (3+) are associated with tumor growth inhibition. Furthermore, EGFR amplification were observed in 2/4 (50%) responders with average copy number 5.8 and >15 respectively. Our data suggest that a GC subtype with EGFR amplification and overexpression benefit from cetuximab treatment.


PLOS ONE | 2012

Integration of DNA Copy Number Alterations and Transcriptional Expression Analysis in Human Gastric Cancer

Biao Fan; Somkid Dachrut; Ho Coral; Siu Tsan Yuen; Kent Man Chu; Simon Law; Lianhai Zhang; Jiafu Ji; Suet Yi Leung; Xin Chen

Background Genomic instability with frequent DNA copy number alterations is one of the key hallmarks of carcinogenesis. The chromosomal regions with frequent DNA copy number gain and loss in human gastric cancer are still poorly defined. It remains unknown how the DNA copy number variations contributes to the changes of gene expression profiles, especially on the global level. Principal Findings We analyzed DNA copy number alterations in 64 human gastric cancer samples and 8 gastric cancer cell lines using bacterial artificial chromosome (BAC) arrays based comparative genomic hybridization (aCGH). Statistical analysis was applied to correlate previously published gene expression data obtained from cDNA microarrays with corresponding DNA copy number variation data to identify candidate oncogenes and tumor suppressor genes. We found that gastric cancer samples showed recurrent DNA copy number variations, including gains at 5p, 8q, 20p, 20q, and losses at 4q, 9p, 18q, 21q. The most frequent regions of amplification were 20q12 (7/72), 20q12–20q13.1 (12/72), 20q13.1–20q13.2 (11/72) and 20q13.2–20q13.3 (6/72). The most frequent deleted region was 9p21 (8/72). Correlating gene expression array data with aCGH identified 321 candidate oncogenes, which were overexpressed and showed frequent DNA copy number gains; and 12 candidate tumor suppressor genes which were down-regulated and showed frequent DNA copy number losses in human gastric cancers. Three networks of significantly expressed genes in gastric cancer samples were identified by ingenuity pathway analysis. Conclusions This study provides insight into DNA copy number variations and their contribution to altered gene expression profiles during human gastric cancer development. It provides novel candidate driver oncogenes or tumor suppressor genes for human gastric cancer, useful pathway maps for the future understanding of the molecular pathogenesis of this malignancy, and the construction of new therapeutic targets.


American Journal of Pathology | 2010

S100A6 overexpression is associated with poor prognosis and is epigenetically up-regulated in gastric cancer.

Xiaohong Wang; Lianhai Zhang; Xi-Yao Zhong; Xiaofang Xing; Liu Yr; Zhao-Jian Niu; Yong Peng; Hong Du; Zhang Gg; Ying Hu; Ni Liu; Zhu Yb; Shao-hua Ge; Wei Zhao; Ai-Ping Lu; Jiyou Li; Jiafu Ji

S100A6 has been implicated in a variety of biological functions as well as tumorigenesis. In this study, we investigated the expression status of S100A6 in relation to the clinicopathological features and prognosis of patients with gastric cancer and further explored a possible association of its expression with epigenetic regulation. S100A6 expression was remarkably increased in 67.5% of gastric cancer tissues as compared with matched noncancerous tissues. Statistical analysis demonstrated a clear correlation between high S100A6 expression and various clinicopathological features, such as depth of wall invasion, positive lymph node involvement, liver metastasis, vascular invasion, and tumor-node metastasis stage (P < 0.05 in all cases), as well as revealed that S100A6 is an independent prognostic predictor (P = 0.026) significantly related to poor prognosis (P = 0.0004). Further exploration found an inverse relationship between S100A6 expression and the methylation status of the seventh and eighth CpG sites in the promoter/first exon and the second to fifth sites in the second exon/second intron. In addition, the level of histone H3 acetylation was found to be significantly higher in S100A6-expressing cancer cells. After 5-azacytidine or trichostatin A treatment, S100A6 expression was clearly increased in S100A6 low-expressing cells. In conclusion, our results suggested that S100A6 plays an important role in the progression of gastric cancer, affecting patient prognosis, and is up-regulated by epigenetic regulation.


World Journal of Gastroenterology | 2011

Discovery and validation of prognostic markers in gastric cancer by genome-wide expression profiling

Yue-Zheng Zhang; Lianhai Zhang; Yang Gao; Chaohua Li; Shuqin Jia; Ni Liu; Feng Cheng; De-Yun Niu; William Cs Cho; Jiafu Ji; Changqing Zeng

AIM To develop a prognostic gene set that can predict patient overall survival status based on the whole genome expression analysis. METHODS Using Illumina HumanWG-6 BeadChip followed by semi-supervised analysis, we analyzed the expression of 47,296 transcripts in two batches of gastric cancer patients who underwent surgical resection. Thirty-nine samples in the first batch were used as the training set to discover candidate markers correlated to overall survival, and thirty-three samples in the second batch were used for validation. RESULTS A panel of ten genes were identified as prognostic marker in the first batch samples and classified patients into a low- and a high-risk group with significantly different survival times (P = 0.000047). This prognostic marker was then verified in an independent validation sample batch (P = 0.0009). By comparing with the traditional Tumor-node-metastasis (TNM) staging system, this ten-gene prognostic marker showed consistent prognosis results. It was the only independent prognostic value by multivariate Cox regression analysis (P = 0.007). Interestingly, six of these ten genes are ribosomal proteins, suggesting a possible association between the deregulation of ribosome related gene expression and the poor prognosis. CONCLUSION A ten-gene marker correlated with overall prognosis, including 6 ribosomal proteins, was identified and verified, which may complement the predictive value of TNM staging system.


Neuroscience | 1997

Lipofectin-facilitated transfer of cholecystokinin gene corrects behavioral abnormalities of rats with audiogenic seizures

Lianhai Zhang; Xuezhu Li; Mark A. Smith; R.M Post; Ji-Sheng Han

To evaluate the potential for lipofectin-mediated central nervous system gene transfer, the plasmid coding for cholecystokinin was administered intracerebroventricularly to rats, which have congenital audiogenic seizures and high responses to peripheral electric stimulation-induced analgesia. Previous studies had shown that low brain cholecystokinin levels may be the neurochemical variable of rats audiogenic seizure and high responses to the analgesia because cholecystokinin is an anticonvulsant and anti-opioid neuropeptide. Gene transfer of cholecystokinin corrected the increased susceptibility to audiogenic seizures and the high responses to analgesia for about one week. Similar administration of plasmid expressing beta-galactosidase indicated that the vector mainly transfected ependymal cells lining the ventricle and pia mater cells. The increased cholecystokinin messenger RNA and immunoreactivity in the hippocampus following stereotactic intrahippocampal administration of cholecystokinin plasmid was also demonstrated with in situ hybridization and immunohistochemistry techniques. These results suggest that lipofectin-mediated gene transfer will be useful for studies of brain function, the modification of behavior and gene therapy for central nervous system disorders.


Histopathology | 2011

Phospholipase A2 group IIA expression correlates with prolonged survival in gastric cancer

Xiaofang Xing; Hong Li; Xi-Yao Zhong; Lianhai Zhang; Xiaohong Wang; Liu Yr; Shuqin Jia; Tao Shi; Zhao-Jian Niu; Yong Peng; Hong Du; Zhang Gg; Ying Hu; Ai-Ping Lu; Jiyou Li; She Chen; Jiafu Ji

Xing X‐F, Li H, Zhong X‐Y, Zhang L‐H, Wang X‐H, Liu Y‐Q, Jia S‐Q, Shi T, Niu Z‐J, Peng Y, Du H, Zhang G‐G, Hu Y, Lu A‐P, Li J‐Y, Chen S & Ji J‐F 
(2011) Histopathology59, 198–206


BMC Cancer | 2012

Presence of S100A9-positive inflammatory cells in cancer tissues correlates with an early stage cancer and a better prognosis in patients with gastric cancer

Biao Fan; Lianhai Zhang; Yongning Jia; Xi-Yao Zhong; Liu Yr; Xiaojing Cheng; Xiaohong Wang; Xiaofang Xing; Ying Hu; Yingai Li; Hong Du; Wei Zhao; Zhao-Jian Niu; Ai-Ping Lu; Jiyou Li; Jiafu Ji

BackgroundS100A9 was originally discovered as a factor secreted by inflammatory cells. Recently, S100A9 was found to be associated with several human malignancies. The purpose of this study is to investigate S100A9 expression in gastric cancer and explore its role in cancer progression.MethodsS100A9 expression in gastric tissue samples from 177 gastric cancer patients was assessed by immunohistochemistry. The expression of its dimerization partner S100A8 and the S100A8/A9 heterodimer were also assessed by the same method. The effect of exogenous S100A9 on motility of gastric cancer cells AGS and BGC-823 was then investigated.ResultsS100A9 was specifically expressed by inflammatory cells such as macrophages and neutrophils in human gastric cancer and gastritis tissues. Statistical analysis showed that a high S100A9 cell count (> = 200) per 200x magnification microscopic field in cancer tissues was predictive of early stage gastric cancer. High S100A9-positive cell count was negatively correlated with lymph node metastasis (P = 0.009) and tumor invasion (P = 0.011). S100A9 was identified as an independent prognostic predictor of overall survival of patients with gastric cancer (P = 0.04). Patients with high S100A9 cell count were with favorable prognosis (P = 0.021). Further investigation found that S100A8 distribution in human gastric cancer tissues was similar to S100A9. However, the number of S100A8-positive cells did not positively correlate with patient survival. The inflammatory cells infiltrating cancer were S100A8/A9 negative, while those in gastritis were positive. Furthermore, exogenous S100A9 protein inhibited migration and invasion of gastric cancer cells.ConclusionsOur results suggested S100A9-positive inflammatory cells in gastric cancer tissues are associated with early stage of gastric cancer and good prognosis.


Journal of Cancer Research and Clinical Oncology | 2006

Dominant expression of 85-kDa form of cortactin in colorectal cancer

Lianhai Zhang; Bo Tian; Li-Rong Diao; Yong-Yan Xiong; Su-Fang Tian; Bian-Hong Zhang; Wenmei Li; Hui Ren; Yan Li; Jiafu Ji

Purpose: Cortactin is commonly expressed in several human cancers, which may alter their invasive or metastatic properties. Eighty five kilodalton form (p85) and 80-kDa form (p80) of cortactin are two separate bands in SDS-PAGE representing different conformational states. The objective of this study was to investigate cortactin expression in colorectal cancer (CRC). Experimental Design: Cortactin expression was studied in an eight paired laser capture microdissection (LCM) CRC tissues and matched non-cancerous epithelia by immunoblotting. The expression in 58 CRC and two cell lines, HCT8 and HCT116, was studied respectively by immunohistochemistry and confocal laser scanning immunofluorescence. Results: Dominant expression of p85 was identified in LCM-procured CRC tissues compared with equal intensity of p85 and p80 forms in non-cancerous tissues, while the amount of total cortactin was approximate. Immunohistochemistry analysis demonstrated that cortactin located in the cytoplasm of tumor cells and adjacent non-cancerous cells, and its expression was negatively correlated with TNM staging and lymphatic invasion status. However, the invasion fronts in 3 of 58 primary tumors and 28 of 39 available lymph node metastases were intensively stained. Further, immunofluorescence analysis showed that cortactin was distributed in cytoplasm and enriched in the front of the extending lamellipodia at adhering side of cultured cancer cells. Conclusions: Our results demonstrated the dominant expression of p85 form of cortactin in CRC for the first time. The enrichment of cortactin in the invasion front of some tumor cells and in the extending lamellipodia of cultured cancer cells suggests that cortactin may help cancer cell movement.

Collaboration


Dive into the Lianhai Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge