Libo Dong
Chinese Center for Disease Control and Prevention
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Libo Dong.
The New England Journal of Medicine | 2013
Rongbao Gao; Bin Cao; Yunwen Hu; Zijian Feng; Dayan Wang; Wanfu Hu; Jian Chen; Zhijun Jie; Haibo Qiu; Ke Xu; Xuewei Xu; Hongzhou Lu; Wenfei Zhu; Zhancheng Gao; Nijuan Xiang; Yinzhong Shen; Zebao He; Yong Gu; Zhiyong Zhang; Yi Yang; Xiang Zhao; Lei Zhou; Xiaodan Li; Shumei Zou; Ye Zhang; Xiyan Li; Lei Yang; Junfeng Guo; Jie Dong; Qun Li
BACKGROUND Infection of poultry with influenza A subtype H7 viruses occurs worldwide, but the introduction of this subtype to humans in Asia has not been observed previously. In March 2013, three urban residents of Shanghai or Anhui, China, presented with rapidly progressing lower respiratory tract infections and were found to be infected with a novel reassortant avian-origin influenza A (H7N9) virus. METHODS We obtained and analyzed clinical, epidemiologic, and virologic data from these patients. Respiratory specimens were tested for influenza and other respiratory viruses by means of real-time reverse-transcriptase-polymerase-chain-reaction assays, viral culturing, and sequence analyses. RESULTS A novel reassortant avian-origin influenza A (H7N9) virus was isolated from respiratory specimens obtained from all three patients and was identified as H7N9. Sequencing analyses revealed that all the genes from these three viruses were of avian origin, with six internal genes from avian influenza A (H9N2) viruses. Substitution Q226L (H3 numbering) at the 210-loop in the hemagglutinin (HA) gene was found in the A/Anhui/1/2013 and A/Shanghai/2/2013 virus but not in the A/Shanghai/1/2013 virus. A T160A mutation was identified at the 150-loop in the HA gene of all three viruses. A deletion of five amino acids in the neuraminidase (NA) stalk region was found in all three viruses. All three patients presented with fever, cough, and dyspnea. Two of the patients had a history of recent exposure to poultry. Chest radiography revealed diffuse opacities and consolidation. Complications included acute respiratory distress syndrome and multiorgan failure. All three patients died. CONCLUSIONS Novel reassortant H7N9 viruses were associated with severe and fatal respiratory disease in three patients. (Funded by the National Basic Research Program of China and others.).
The Lancet | 2014
Haiying Chen; Hui Yuan; Rongbao Gao; Jinxiang Zhang; Dayan Wang; Ying Xiong; Guoyin Fan; Fan Yang; Xiaodan Li; Jianfang Zhou; Shumei Zou; Lei Yang; Tao Chen; Libo Dong; Hong Bo; Xiang Zhao; Ye Zhang; Yu Lan; Tian Bai; Jie Dong; Qun Li; Shiwen Wang; Zhang Y; Hui Li; Tian Gong; Yong Shi; Xiansheng Ni; Jianxiong Li; Jun Zhou; Jiyi Fan
BACKGROUND Human infections with different avian influenza viruses--eg, H5N1, H9N2, and H7N9--have raised concerns about pandemic potential worldwide. We report the first human infection with a novel reassortant avian influenza A H10N8 virus. METHODS We obtained and analysed clinical, epidemiological, and virological data from a patient from Nanchang City, China. Tracheal aspirate specimens were tested for influenza virus and other possible pathogens by RT-PCR, viral culture, and sequence analyses. A maximum likelihood phylogenetic tree was constructed. FINDINGS A woman aged 73 years presented with fever and was admitted to hospital on Nov 30, 2013. She developed multiple organ failure and died 9 days after illness onset. A novel reassortant avian influenza A H10N8 virus was isolated from the tracheal aspirate specimen obtained from the patient 7 days after onset of illness. Sequence analyses revealed that all the genes of the virus were of avian origin, with six internal genes from avian influenza A H9N2 viruses. The aminoacid motif GlnSerGly at residues 226-228 of the haemagglutinin protein indicated avian-like receptor binding preference. A mixture of glutamic acid and lysine at residue 627 in PB2 protein--which is associated with mammalian adaptation--was detected in the original tracheal aspirate samples. The virus was sensitive to neuraminidase inhibitors. Sputum and blood cultures and deep sequencing analysis indicated no co-infection with bacteria or fungi. Epidemiological investigation established that the patient had visited a live poultry market 4 days before illness onset. INTERPRETATION The novel reassortant H10N8 virus obtained is distinct from previously reported H10N8 viruses. The virus caused human infection and could have been associated with the death of a patient. FUNDING Emergency Research Project on human infection with avian influenza H7N9 virus, the National Basic Research Program of China, and the National Mega-projects for Infectious Diseases.
Nature | 2013
Jiangfang Zhou; Dayan Wang; Rongbao Gao; Baihui Zhao; Jingdong Song; Xian Qi; Yanjun Zhang; Yonglin Shi; Lei Yang; Wenfei Zhu; Tian Bai; Kun Qin; Yu Lan; Shumei Zou; Junfeng Guo; Jie Dong; Libo Dong; Ye Zhang; Hejiang Wei; Xiaodan Li; Jian Lu; Liqi Liu; Xiang Zhao; Xiyan Li; Weijuan Huang; Leying Wen; Hong Bo; Li Xin; Yongkun Chen; Cuilin Xu
Human infection associated with a novel reassortant avian influenza H7N9 virus has recently been identified in China. A total of 132 confirmed cases and 39 deaths have been reported. Most patients presented with severe pneumonia and acute respiratory distress syndrome. Although the first epidemic has subsided, the presence of a natural reservoir and the disease severity highlight the need to evaluate its risk on human public health and to understand the possible pathogenesis mechanism. Here we show that the emerging H7N9 avian influenza virus poses a potentially high risk to humans. We discover that the H7N9 virus can bind to both avian-type (α2,3-linked sialic acid) and human-type (α2,6-linked sialic acid) receptors. It can invade epithelial cells in the human lower respiratory tract and type II pneumonocytes in alveoli, and replicated efficiently in ex vivo lung and trachea explant culture and several mammalian cell lines. In acute serum samples of H7N9-infected patients, increased levels of the chemokines and cytokines IP-10, MIG, MIP-1β, MCP-1, IL-6, IL-8 and IFN-α were detected. We note that the human population is naive to the H7N9 virus, and current seasonal vaccination could not provide protection.
The Lancet | 2008
Hua Wang; Zijian Feng; Yuelong Shu; Hongjie Yu; Lei Zhou; Rongqiang Zu; Yang Huai; Jie Dong; Changjun Bao; Leying Wen; Hong Wang; Peng Yang; Wei Zhao; Libo Dong; Minghao Zhou; Qiaohong Liao; Haitao Yang; Min Wang; Xiaojun Lu; Zhiyang Shi; Wei Wang; Ling Gu; Fengcai Zhu; Qun Li; Weidong Yin; Weizhong Yang; Dexin Li; Timothy M. Uyeki; Wang Y
BACKGROUND In December, 2007, a family cluster of two individuals infected with highly pathogenic avian influenza A (H5N1) virus was identified in Jiangsu Province, China. Field and laboratory investigations were implemented immediately by public-health authorities. METHODS Epidemiological, clinical, and virological data were collected and analysed. Respiratory specimens from the patients were tested by reverse transcriptase (RT) PCR and by viral culture for the presence of H5N1 virus. Contacts of cases were monitored for symptoms of illness for 10 days. Any contacts who became ill had respiratory specimens collected for H5N1 testing by RT PCR. Sera were obtained from contacts for H5N1 serological testing by microneutralisation and horse red-blood-cell haemagglutinin inhibition assays. FINDINGS The 24-year-old index case died, and the second case, his 52-year-old father, survived after receiving early antiviral treatment and post-vaccination plasma from a participant in an H5N1 vaccine trial. The index cases only plausible exposure to H5N1 virus was a poultry market visit 6 days before the onset of illness. The second case had substantial unprotected close exposure to his ill son. 91 contacts with close exposure to one or both cases without adequate protective equipment provided consent for serological investigation. Of these individuals, 78 (86%) received oseltamivir chemoprophylaxis and two had mild illness. Both ill contacts tested negative for H5N1 by RT PCR. All 91 close contacts tested negative for H5N1 antibodies. H5N1 viruses isolated from the two cases were genetically identical except for one non-synonymous nucleotide substitution. INTERPRETATION Limited, non-sustained person-to-person transmission of H5N1 virus probably occurred in this family cluster.
Journal of Virology | 2011
Xiu-Feng Wan; Libo Dong; Yu Lan; Li-Ping Long; Cuiling Xu; Shumei Zou; Zi Li; Leying Wen; Zhipeng Cai; Wei Wang; Xiaodan Li; Fan Yuan; Hongtao Sui; Ye Zhang; Jie Dong; Shanhua Sun; Yan Gao; Min Wang; Tian Bai; Lei Yang; Dexin Li; Weizhong Yang; Hongjie Yu; Shiwen Wang; Zijian Feng; Wang Y; Yuanji Guo; Richard J. Webby; Yuelong Shu
ABSTRACT Human infections of H5N1 highly pathogenic avian influenza virus have continued to occur in China without corresponding outbreaks in poultry, and there is little conclusive evidence of the source of these infections. Seeking to identify the source of the human infections, we sequenced 31 H5N1 viruses isolated from humans in China (2005 to 2010). We found a number of viral genotypes, not all of which have similar known avian virus counterparts. Guided by patient questionnaire data, we also obtained environmental samples from live poultry markets and dwellings frequented by six individuals prior to disease onset (2008 and 2009). H5N1 viruses were isolated from 4 of the 6 live poultry markets sampled. In each case, the genetic sequences of the environmental and corresponding human isolates were highly similar, demonstrating a link between human infection and live poultry markets. Therefore, infection control measures in live poultry markets are likely to reduce human H5N1 infection in China.
The Journal of Infectious Diseases | 2009
Lei Zhou; Qiaohong Liao; Libo Dong; Yang Huai; Tian Bai; Nijuan Xiang; Yuelong Shu; Wei Liu; Shiwen Wang; Pengzhe Qin; Min Wang; Xuesen Xing; Jun Lv; Ray Y. Chen; Zijian Feng; Weizhong Yang; Timothy M. Uyeki; Hongjie Yu
BACKGROUND In China, 30 human cases of avian influenza A (H5N1) virus infection were identified through July 2008. We conducted a retrospective case-control study to identify risk factors for influenza H5N1 disease in China. METHODS A questionnaire about potential influenza H5N1 exposures was administered to 28 patients with influenza H5N1 and to 134 randomly selected control subjects matched by age, sex, and location or to proxies. Conditional logistic regression analyses were performed. RESULTS Before their illness, patients living in urban areas had visited wet poultry markets, and patients living in rural areas had exposure to sick or dead backyard poultry. In multivariable analyses, independent risk factors for influenza H5N1 were direct contact with sick or dead poultry (odds ratio [OR], 506.6 [95% confidence interval {CI}, 15.7-16319.6]; P<.001), indirect exposure to sick or dead poultry (OR, 56.9 [95% CI, 4.3-745.6]; P=.002), and visiting a wet poultry market (OR, 15.4 [95% CI, 3.0-80.2]; P=.001). CONCLUSIONS To prevent human influenza H5N1 in China, the level of education about avoiding direct or close exposures to sick or dead poultry should be increased, and interventions to prevent the spread of influenza H5N1 at live poultry markets should be implemented.
The Journal of Infectious Diseases | 2014
Lili Xu; Linlin Bao; Wei Deng; Libo Dong; Hua Zhu; Ting Chen; Qi Lv; Fengdi Li; Jing Yuan; Zhiguang Xiang; Kai Gao; Yanfeng Xu; Lan Huang; Yanhong Li; Jiangning Liu; Yanfeng Yao; Pin Yu; Xiyan Li; Weijuan Huang; Xiang Zhao; Yu Lan; Junfeng Guo; Qiang Wei; Honglin Chen; Lianfeng Zhang; Chuan Qin
The outbreak of human infections caused by novel avian-origin influenza A(H7N9) in China since March 2013 underscores the need to better understand the pathogenicity and transmissibility of these viruses in mammals. In a ferret model, the pathogenicity of influenza A(H7N9) was found to be less than that of an influenza A(H5N1) strain but comparable to that of 2009 pandemic influenza A(H1N1), based on the clinical signs, mortality, virus dissemination, and results of histopathologic analyses. Influenza A(H7N9) could replicate in the upper and lower respiratory tract, the heart, the liver, and the olfactory bulb. It is worth noting that influenza A(H7N9) exhibited a low level of transmission between ferrets via respiratory droplets. There were 4 mutations in the virus isolated from the contact ferret: D678Y in the gene encoding PB2, R157K in the gene encoding hemagglutinin (H3 numbering), I109T in the gene encoding nucleoprotein, and T10I in the gene encoding neuraminidase. These data emphasized that avian-origin influenza A(H7N9) can be transmitted between mammals, highlighting its potential for human-to-human transmissibility.
Eurosurveillance | 2014
Dayan Wang; Lei Yang; Rongbao Gao; Zhang X; Tan Y; Aiping Wu; Wenfei Zhu; Jianfang Zhou; Shumei Zou; Xiyan Li; Sun Y; Zhang Y; Liu Y; Liu T; Xiong Y; Xu J; Chen L; Weng Y; Xian Qi; Junfeng Guo; Jie Dong; Huang W; Libo Dong; Xiang Zhao; Liu L; Jian Lu; Yu Lan; Hejiang Wei; Li Xin; Yongkun Chen
A novel avian influenza A(H7N9) virus causing human infection emerged in February 2013 in China. To elucidate the mechanism of interspecies transmission, we compared the signature amino acids of avian influenza A(H7N9) viruses from human and non-human hosts and analysed the reassortants of 146 influenza A(H7N9) viruses with full genome sequences. We propose a genetic tuning procedure with continuous amino acid substitutions and reassorting that mediates host adaptation and interspecies transmission. When the early influenza A(H7N9) virus, containing ancestor haemagglutinin (HA) and neuraminidase (NA) genes similar to A/Shanghai/05 virus, circulated in waterfowl and transmitted to terrestrial poultry, it acquired an NA stalk deletion at amino acid positions 69 to 73. Then, receptor binding preference was tuned to increase the affinity to human-like receptors through HA G186V and Q226L mutations in terrestrial poultry. Additional mammalian adaptations such as PB2 E627K were selected in humans. The continual reassortation between H7N9 and H9N2 viruses resulted in multiple genotypes for further host adaptation. When we analysed a potential association of mutations and reassortants with clinical outcome, only the PB2 E627K mutation slightly increased the case fatality rate. Genetic tuning may create opportunities for further adaptation of influenza A(H7N9) and its potential to cause a pandemic.
Nature Communications | 2012
Xiangjun Du; Libo Dong; Yu Lan; Yousong Peng; Aiping Wu; Ye Zhang; Weijuan Huang; Dayan Wang; Min Wang; Yuanji Guo; Yuelong Shu; Taijiao Jiang
One of the primary efforts in influenza vaccine strain recommendation is to monitor through gene sequencing the viral surface protein haemagglutinin (HA) variants that lead to viral antigenic changes. Here we have developed a computational method, denoted as PREDAC, to predict antigenic clusters of influenza A (H3N2) viruses with high accuracy from viral HA sequences. Application of PREDAC to large-scale HA sequence data of H3N2 viruses isolated from diverse regions of Mainland China identified 17 antigenic clusters that have dominated for at least one season between 1968 and 2010. By tracking the dynamics of the dominant antigenic clusters, we not only find that dominant antigenic clusters change more frequently in China than in the United States/Europe, but also characterize the antigenic patterns of seasonal H3N2 viruses within China. Furthermore, we demonstrate that the coupling of large-scale HA sequencing with PREDAC can significantly improve vaccine strain recommendation for China.
Journal of Virology | 2016
Dayan Wang; Lei Yang; Wenfei Zhu; Ye Zhang; Shumei Zou; Hong Bo; Rongbao Gao; Jie Dong; Weijuan Huang; Junfeng Guo; Zi Li; Xiang Zhao; Xiaodan Li; Li Xin; Jianfang Zhou; Tao Chen; Libo Dong; Hejiang Wei; Xiyan Li; Liqi Liu; Jing Tang; Yu Lan; Jing Yang; Yuelong Shu
ABSTRACT Due to enzootic infections in poultry and persistent human infections in China, influenza A (H7N9) virus has remained a public health threat. The Yangtze River Delta region, which is located in eastern China, is well recognized as the original source for H7N9 outbreaks. Based on the evolutionary analysis of H7N9 viruses from all three outbreak waves since 2013, we identified the Pearl River Delta region as an additional H7N9 outbreak source. H7N9 viruses are repeatedly introduced from these two sources to the other areas, and the persistent circulation of H7N9 viruses occurs in poultry, causing continuous outbreak waves. Poultry movements may contribute to the geographic expansion of the virus. In addition, the AnH1 genotype, which was predominant during wave 1, was replaced by JS537, JS18828, and AnH1887 genotypes during waves 2 and 3. The establishment of a new source and the continuous evolution of the virus hamper the elimination of H7N9 viruses, thus posing a long-term threat of H7N9 infection in humans. Therefore, both surveillance of H7N9 viruses in humans and poultry and supervision of poultry movements should be strengthened. IMPORTANCE Since its occurrence in humans in eastern China in spring 2013, the avian H7N9 viruses have been demonstrating the continuing pandemic threat posed by the current influenza ecosystem in China. As the viruses are silently circulated in poultry, with potentially severe outcomes in humans, H7N9 virus activity in humans in China is very important to understand. In this study, we identified a newly emerged H7N9 outbreak source in the Pearl River Delta region. Both sources in the Yangtze River Delta region and the Pearl River Delta region have been established and found to be responsible for the H7N9 outbreaks in mainland China.