Lichan Tao
Nanjing University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lichan Tao.
Cellular Physiology and Biochemistry | 2015
Lichan Tao; Yihua Bei; Shenghui Lin; Haifeng Zhang; Yanli Zhou; Jingfa Jiang; Ping Chen; Shutong Shen; Junjie Xiao; Xinli Li
Background/Aims: Acute myocardial infarction (AMI) represents a major cause of morbidity and mortality worldwide. Exercise has been proved to reduce myocardial ischemia-reperfusion (I/R) injury However it remains unclear whether, and (if so) how, exercise could protect against AMI. Methods: Mice were trained using a 3-week swimming protocol, and then subjected to left coronary artery (LCA) ligation, and finally sacrificed 24 h after AMI. Myocardial infarct size was examined with triphenyltetrazolium chloride staining. Cardiac apoptosis was determined by TUNEL staining. Mitochondria density was checked by Mito-Tracker immunofluorescent staining. Quantitative reverse transcription polymerase chain reactions and Western blotting were used to determine genes related to apoptosis, autophagy and myocardial energy metabolism. Results: Exercise training reduces myocardial infarct size and abolishes AMI-induced autophagy and apoptosis. AMI leads to a shift from fatty acid to glucose metabolism in the myocardium with a downregulation of PPAR-α and PPAR-γ. Also, AMI induces an adaptive increase of mitochondrial DNA replication and transcription in the acute phase of MI, accompanied by an activation of PGC-1α signaling. Exercise abolishes the derangement of myocardial glucose and lipid metabolism and further enhances the adaptive increase of mitochondrial biogenesis. Conclusion: Exercise training protects against AMI-induced acute cardiac injury through improving myocardial energy metabolism and enhancing the early adaptive change of mitochondrial biogenesis.
Oncotarget | 2015
Lichan Tao; Yihua Bei; Yanli Zhou; Junjie Xiao; Xinli Li
Developing new therapeutic strategies which could enhance cardiomyocyte regenerative capacity is of significant clinical importance. Though promising, methods to promote cardiac regeneration have had limited success due to the weak regenerative capacity of the adult mammalian heart. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs, miRs) and long non-coding RNAs (lncRNAs), are functional RNA molecules without a protein coding function that have been reported to engage in cardiac regeneration and repair. In light of current regenerative strategies, the regulatory effects of ncRNAs can be categorized as follows: cardiac proliferation, cardiac differentiation, cardiac survival and cardiac reprogramming. miR-590, miR-199a, miR-17-92 cluster, miR302-367 cluster and miR-222 have been reported to promote cardiomyocyte proliferation while miR-1 and miR-133 suppress that. miR-499 and miR-1 promote the differentiation of cardiac progenitors into cardiomyocyte while miR-133 and H19 inhibit that. miR-21, miR-24, miR-221, miR-199a and miR-155 improve cardiac survival while miR-34a, miR-1 and miR-320 exhibit opposite effects. miR-1, miR-133, miR-208 and miR-499 are capable of reprogramming fibroblasts to cardiomyocyte-like cells and miR-284, miR-302, miR-93, miR-106b and lncRNA-ST8SIA3 are able to enhace cardiac reprogramming. Exploring non-coding RNA-based methods to enhance cardiac regeneration would be instrumental for devising new effective therapies against cardiovascular diseases.
Scientific Reports | 2015
Lichan Tao; Sutong Shen; Siyi Fu; Hongyi Fang; Xiuzhi Wang; Saumya Das; Joost P.G. Sluijter; Anthony Rosenzweig; Yonglan Zhou; Xiangqing Kong; Junjie Xiao; Xinli Li
In a multicenter randomized double-blind study we demonstrated that Qiliqiangxin (QLQX), a traditional Chinese medicine, had a protective effect in heart failure patients. However, whether and via which mechanism QLQX attenuates cardiac remodeling after acute myocardial infarction (AMI) is still unclear. AMI was created by ligating the left anterior descending coronary artery in mice. Treating the mice in the initial 3 days after AMI with QLQX did not change infarct size. However, QLQX treatment ameliorated adverse cardiac remodeling 3 weeks after AMI including better preservation of cardiac function, decreased apoptosis and reduced fibrosis. Peroxisome proliferator-activated receptor-γ (PPARγ) was down-regulated in control animals after AMI and up-regulated by QLQX administration. Interestingly, expression of AKT, SAPK/JNK, and ERK was not altered by QLQX treatment. Inhibition of PPARγ reduced the beneficial effects of QLQX in AMI remodeling, whereas activation of PPARγ failed to provide additional improvement in the presence of QLQX, suggesting a key role for PPARγ in the effects of QLQX during cardiac remodeling after AMI. This study indicates that QLQX attenuates cardiac remodeling after AMI by increasing PPARγ levels. Taken together, QLQX warrants further investigation as as a therapeutic intervention to mitigate remodeling and heart failure after AMI.
Cellular Physiology and Biochemistry | 2013
Hailang Liu; Guixian Song; Lijuan Zhou; Xiaoshan Hu; Ming Liu; Junwei Nie; Shuangshuang Lu; Xiangqi Wu; Yunshan Cao; Lichan Tao; Ling Chen; Lingmei Qian
Background/Aims: Previous studies have indicated that long non-coding RNAs (lncRNA) are related to the occurrence and development of many human diseases, such as cancer and the HELLP and the brachydactyly syndromes. However, studies of LncRNA in heart failure have not yet been reported. Here, we investigated cardiac lncRNA expression profiles in the myocardial-specific knockout pdk1 gene (KO) mouse model of heart failure. Methods: Cardiac samples were obtained from PDK1 KO and WT mice on postnatal (P) day 8 (P8) and day 40 (P40), and lncRNA expression profiles were analyzed by sequencing and screening using the Arraystar mouse lncRNA microarray. Quantitative real-time PCR analysis of these lncRNAs confirmed the identity of some genes. Results: Comparisons of the KO and control groups showed fold changes of >1.5 in the expression levels of 2,024 lncRNAs at P8, while fold changes of >2 in the expression levels of 4,095 lncRNAs were detected at P40. Nineteen lncRNAs were validated by RT-PCR. Bioinformatic and pathway analyses indicated that mkk7, a sense overlap lncRNA, may be involved in the pathological processes of heart failure through the MAPK signaling pathway. Conclusion: These data reveal differentially expressed lncRNA in mice with a myocardial-specific deletion of the pdk1 gene, which may provide new insights into the mechanism of heart failure in PDK1 knockout mice.
Cellular Physiology and Biochemistry | 2015
Yonglan Zhou; Hongyi Fang; Shenghui Lin; Shutong Shen; Lichan Tao; Junjie Xiao; Xinli Li
Background/Aims: Qiliqiangxin (QL) has been used for the treatment of chronic heart failure in China. Accumulating evidence suggests QLs cardio-protective effects on continuous myocardial ischemia. However, it is unclear whether QL has beneficial effects on cardiac ischemia-reperfusion (I/R) injury. Methods: A mouse model of cardiac I/R was established by ligation of the left anterior descending coronary artery for 45 minutes followed by reperfusion. The mice were treated with QL for three days before surgery and continually after I/R. Triphenyltetrazolium chloride staining, echocardiography and Massons trichrome staining were used to determine infarct size, cardiac function, and fibrosis, respectively. Expression levels of phospho-mTOR (Ser2448), mTOR, phospho-4EBP (Ser65), 4EBP, phospho-Akt (Ser473) and Akt were detected by Western blotting. Results: At 1 day after I/R, QL treatment significantly reduced the infarct size of mice exposed to I/R. At 7 days after I/R, mortality was reduced in QL treated animals in comparison with the control group. In addition, QL treated mice showed increased left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) at 1 and 7 days after I/R. In agreement, Massons trichrome staining demonstrated that interstitial fibrosis was less pronounced in QL treated mice compared with controls, suggesting that adverse left ventricular remodeling is attenuated in QL treated mice. Moreover, western blotting analysis demonstrated that QL activated the mTOR pathway, while mTOR inhibition via Rapamycin abolished the protective effects of QL against I/R injury. Conclusion: This study suggests that QL attenuates the progression of cardiac remodeling after I/R likely via mTOR activation. This represents a new application for QL in the prevention of I/R injury.
Development | 2015
Wen Luo; Xia Zhao; Hengwei Jin; Lichan Tao; Jingai Zhu; Huijuan Wang; Brian A. Hemmings; Zhongzhou Yang
Second heart field (SHF) progenitors exhibit continued proliferation and delayed differentiation, which are modulated by FGF4/8/10, BMP and canonical Wnt/β-catenin signaling. PTEN-Akt signaling regulates the stem cell/progenitor cell homeostasis in several systems, such as hematopoietic stem cells, intestinal stem cells and neural progenitor cells. To address whether PTEN-Akt signaling is involved in regulating cardiac progenitors, we deleted Pten in SHF progenitors. Deletion of Pten caused SHF expansion and increased the size of the SHF derivatives, the right ventricle and the outflow tract. Cell proliferation of cardiac progenitors was enhanced, whereas cardiac differentiation was unaffected by Pten deletion. Removal of Akt1 rescued the phenotype and early lethality of Pten deletion mice, suggesting that Akt1 was the key downstream target that was negatively regulated by PTEN in cardiac progenitors. Furthermore, we found that inhibition of FOXO by Akt1 suppressed the expression of the gene encoding the BMP ligand (BMP7), leading to dampened BMP signaling in the hearts of Pten deletion mice. Cardiac activation of Akt also increased the Ser552 phosphorylation of β-catenin, thus enhancing its activity. Reducing β-catenin levels could partially rescue heart defects of Pten deletion mice. We conclude that Akt signaling regulates the cell proliferation of SHF progenitors through coordination of BMP signaling and β-catenin activity. Summary: The deletion of Pten reveals that Pten/Akt signaling coordinates BMP signaling and β-catenin to regulate the proliferation and differentiation of second heart field progenitors.
International Journal of Molecular Sciences | 2013
Yunshan Cao; Lichan Tao; Shutong Shen; Junjie Xiao; Hang Wu; Beibei Li; Xiangqi Wu; Wen Luo; Qi Xiao; Xiaoshan Hu; Hailang Liu; Junwei Nie; Shuangshuang Lu; Baiyin Yuan; Zhonglin Han; Bo Xiao; Zhongzhou Yang; Xinli Li
Ras homologue enriched in brain 1 (Rheb1) plays an important role in a variety of cellular processes. In this study, we investigate the role of Rheb1 in the post-natal heart. We found that deletion of the gene responsible for production of Rheb1 from cardiomyocytes of post-natal mice resulted in malignant arrhythmias, heart failure, and premature death of these mice. In addition, heart growth impairment, aberrant metabolism relative gene expression, and increased cardiomyocyte apoptosis were observed in Rheb1-knockout mice prior to the development of heart failure and arrhythmias. Also, protein kinase B (PKB/Akt) signaling was enhanced in Rheb1-knockout mice, and removal of phosphatase and tensin homolog (Pten) significantly prolonged the survival of Rheb1-knockouts. Furthermore, signaling via the mammalian target of rapamycin complex 1 (mTORC1) was abolished and C/EBP homologous protein (CHOP) and phosphorylation levels of c-Jun N-terminal kinase (JNK) were increased in Rheb1 mutant mice. In conclusion, this study demonstrates that Rheb1 is important for maintaining cardiac function in post-natal mice via regulation of mTORC1 activity and stress on the endoplasmic reticulum. Moreover, activation of Akt signaling helps to improve the survival of mice with advanced heart failure. Thus, this study provides direct evidence that Rheb1 performs multiple important functions in the heart of the post-natal mouse. Enhancing Akt activity improves the survival of infant mice with advanced heart failure.
Cellular Physiology and Biochemistry | 2015
Shenghui Lin; Xiaoting Wu; Lichan Tao; Yihua Bei; Haifeng Zhang; Yanliz Zhou; Shutong Shen; Junjie Xiao; Xinli Li
Background/Aims: A traditional Chinese medicine, Qiliqiangxin (QLQX) has been identified to perform protective effects on myocardium energy metabolism in mice with acute myocardial infarction, though the effects of QLQX on myocardial mitochondrial biogenesis under physiological condition is still largely elusive. Methods: H9C2 cells were treated with different concentrations of QLQX (0.25, 0.5, and 1.0 µg/mL) from 6 to 48 hours. Oxidative metabolism and glycolysis were measured by oxygen consumption and extracellular acidification with XF96 analyzer (SeaHorse). Mitochondrial content and ultrastructure were assessed by Mitotracker staining, confocal microscopy, flow cytometry, and transmission electron microscopy. Mitochondrial biogenesis-related genes were measured by qRT-PCR and Western blot. Results: H9C2 cells treated with QLQX exhibited increased glycolysis at earlier time points (6, 12, and 24 hours), while QLQX could enhance oxidative metabolism and mitochondrial uncoupling in H9C2 cells with longer duration of treatment (48 hours). QLQX also increased mitochondrial content and mitochondrial biogenesis-related gene expression levels, including 16sRNA, SSBP1, TWINKLE, TOP1MT and PLOG, with an activation of peroxisome proliferator-activated receptor coactivator 1 alpha (PGC-1α) and its downstream effectors. Silencing PGC-1α could abolish the increased mitochondrial content in H9C2 cells treated with QLQX. Conclusion: Our study is the first to document enhanced metabolism in cardiomyocytes treated with QLQX, which is linked to increased mitochondrial content and mitochondrial biogenesis via activation of PGC-1α.
Current Genomics | 2015
Shutong Shen; Lichan Tao; Xiuzhi Wang; Xiangqing Kong; Xinli Li
Heart failure (HF) is a common disease with high morbidity and mortality; however, none of the drugs available are now entirely optimal for the treatment of HF. In addition to various clinical diseases and environment influences, genetic factors also contribute to the development and progression of HF. Identifying the common variants for HF by genome-wide association studies will facilitate the understanding of pathophysiological mechanisms underlying HF. This review summarizes the recently identified common variants for HF risk and outcome and discusses their implications for the clinic therapy.
Oncotarget | 2015
Lichan Tao; Yihua Bei; Haifeng Zhang; Junjie Xiao; Xinli Li