Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where LiChun Zhou is active.

Publication


Featured researches published by LiChun Zhou.


Free Radical Biology and Medicine | 2008

Suppression of atherogenesis by overexpression of glutathione peroxidase-4 in apolipoprotein E-deficient mice.

ZhongMao Guo; Qitao Ran; L. Jackson Roberts; LiChun Zhou; Arlan Richardson; Chakradhari Sharan; DongFan Wu; Hong Yang

Accumulation of oxidized lipids in the arterial wall contributes to atherosclerosis. Glutathione peroxidase-4 (GPx4) is a hydroperoxide scavenger that removes oxidative modifications from lipids such as free fatty acids, cholesterols, and phospholipids. Here, we set out to assess the effects of GPx4 overexpression on atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) mice. The results revealed that atherosclerotic lesions in the aortic tree and aortic sinus of ApoE(-/-) mice overexpressing GPx4 (hGPx4Tg/ApoE(-/-)) were significantly smaller than those of ApoE(-/-) control mice. GPx4 overexpression also diminished signs of advanced lesions in the aortic sinus, as seen by a decreased occurrence of fibrous caps and acellular areas among hGPx4Tg/ApoE(-/-) animals. This delay of atherosclerosis in hGPx4Tg/ApoE(-/-) mice correlated with reduced aortic F(2)-isoprostane levels (R(2)=0.75, p<0.01). In addition, overexpression of GPx4 lessened atherogenic events induced by the oxidized lipids lysophosphatidylcholine and 7-ketocholesterol, including upregulated expression of adhesion molecules in endothelial cells and adhesion of monocytes to endothelial cells, as well as endothelial necrosis and apoptosis. These results suggest that overexpression of GPx4 inhibits the development of atherosclerosis by decreasing lipid peroxidation and inhibiting the sensitivity of vascular cells to oxidized lipids.


Atherosclerosis | 2009

Overexpression of antioxidant enzymes in ApoE-deficient mice suppresses Benzo(a)pyrene-accelerated atherosclerosis

Hong Yang; LiChun Zhou; Ze-Fen Wang; L. Jackson Roberts; Xinghua Lin; Yanfeng Zhao; ZhongMao Guo

The carcinogenic polycylic aromatic hydrocarbon, benzo(a)pyrene (BaP), has been shown to generate reactive oxygen species (ROS) and accelerate the development of atherosclerosis. To assess the causal role of BaP-generated ROS in this process, we evaluated atherosclerotic metrics in apolipoprotein E-deficient (ApoE(-/-)) mice with or without overexpression of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) and/or catalase. Without BaP, aortic atherosclerotic lesions were smaller in ApoE(-/-) mice overexpressing catalase or both Cu/Zn-SOD and catalase than in those overexpressing neither or Cu/Zn-SOD only. After treating with BaP or vehicle for 24 weeks, mean lesion sizes in the aortic tree and aortic root of ApoE(-/-) mice were increased by approximately 60% and 40%, respectively. BaP also increased the levels of oxidized lipids in the aortic tree of ApoE(-/-) mice and increased the frequency of advanced lesions. In contrast, BaP did not significantly alter lipid peroxidation levels or atherosclerotic lesions in the aortas of ApoE(-/-) mice overexpressing Cu/Zn-SOD and/or catalase. Overexpression of Cu/Zn-SOD and/or catalase also inhibited BaP-induced expression of cell adhesion molecules in aortas and endothelial cells, and reduced BaP-induced monocyte adhesion to endothelial cells. These observations, together with the functions of catalase and Cu/Zn-SOD to scavenge hydrogen peroxide and superoxide anions, implicate a causal role of ROS in the pathogenesis of BaP-induced atherosclerosis.


Free Radical Biology and Medicine | 2009

Overexpression of catalase delays G0/G1- to S-phase transition during cell cycle progression in mouse aortic endothelial cells.

Ogbeyalu Onumah; George Jules; Yanfeng Zhao; LiChun Zhou; Hong Yang; ZhongMao Guo

Although it is understood that hydrogen peroxide (H(2)O(2)) promotes cellular proliferation, little is known about its role in endothelial cell cycle progression. To assess the regulatory role of endogenously produced H(2)O(2) in cell cycle progression, we studied the cell cycle progression in mouse aortic endothelial cells (MAECs) obtained from mice overexpressing a human catalase transgene (hCatTg), which destroys H(2)O(2). The hCatTg MAECs displayed a prolonged doubling time compared to wild-type controls (44.0 +/- 4.7 h versus 28.6 +/- 0.8 h, p<0.05), consistent with a diminished growth rate and H(2)O(2) release. Incubation with aminotriazole, a catalase inhibitor, prevented the observed diminished growth rate in hCatTg MAECs. Inhibition of catalase activity with aminotriazole abrogated catalase overexpression-induced antiproliferative action. Flow cytometry analysis indicated that the prolonged doubling time was principally due to an extended G(0)/G(1) phase in hCatTg MAECs compared to the wild-type cells (25.0 +/- 0.9 h versus 15.9 +/- 1.4 h, p< 0.05). The hCatTg MAECs also exhibited decreased activities of the cyclin-dependent kinase (Cdk) complexes responsible for G(0)/G(1)- to S-phase transition in the cell cycle, including the cyclin D-Cdk4 and cyclin E-Cdk2 complexes. Moreover, the reduction in cyclin-Cdk activities in hCatTg MAECs was accompanied by increased protein levels of two Cdk inhibitors, p21 and p27, which inhibit the Cdk activity required for the G(0)/G(1)- to S-phase transition. Knockdown of p21 and/or p27 attenuated the antiproliferative effect of catalase overexpression in MAECs. These results, together with the fact that catalase is an H(2)O(2) scavenger, suggest that endogenously produced H(2)O(2) mediates MAEC proliferation by fostering the transition from G(0)/G(1) to S phase.


Free Radical Biology and Medicine | 2009

Overexpression of Cu/Zn-superoxide dismutase and/or catalase accelerates benzo(a)pyrene detoxification by upregulation of the aryl hydrocarbon receptor in mouse endothelial cells.

Ze-Fen Wang; Hong Yang; Aramandla Ramesh; L. Jackson Roberts; LiChun Zhou; Xinhua Lin; Yanfeng Zhao; ZhongMao Guo

A reduction in endogenously generated reactive oxygen species in vivo delays benzo(a)pyrene (BaP)-accelerated atherosclerosis, as revealed in hypercholesterolemic mice overexpressing Cu/Zn-superoxide dismutase (SOD) and/or catalase. To understand the molecular events involved in this protective action, we studied the effects of Cu/Zn-SOD and/or catalase overexpression on BaP detoxification and on aryl hydrocarbon receptor (AhR) expression and its target gene expression in mouse aortic endothelial cells (MAECs). Our data demonstrate that overexpression of Cu/Zn-SOD and/or catalase leads to an 18- to 20-fold increase in the expression of AhR protein in MAECs. After BaP exposure, the amount of AhR binding to the cytochrome P450 (CYP) 1A1 promoter was significantly greater, and the concentrations of BaP reactive intermediates were significantly less in MAECs overexpressing Cu/Zn-SOD and/or catalase than in wild-type cells. In addition, the BaP-induced CYP1A1 and 1B1 protein levels and BaP-elevated glutathione S-transferase (GST) activity were significantly higher in these transgenic cells, in parallel with elevated GSTp1, CYP1A1, and CYP1B1 mRNA levels, compared to wild-type MAECs. Moreover, knockdown of AhR with RNA interference diminished the Cu/Zn-SOD and catalase enhancement of CYP1A1 expression, GST activity, and BaP detoxification. These data demonstrate that overexpression of Cu/Zn-SOD and/or catalase is associated with upregulation of AhR and its target genes, such as xenobiotic-metabolizing enzymes.


Free Radical Biology and Medicine | 2011

Nrf2-Dependent Induction of NQO1 in Mouse Aortic Endothelial Cells Overexpressing Catalase

Xinghua Lin; Hong Yang; LiChun Zhou; ZhongMao Guo

Overexpression of catalase has been shown to accelerate benzo(a)pyrene (BaP) detoxification in mouse aortic endothelial cells (MAECs). NAD(P)H:quinone oxidoreductase-1 (NQO1) is an enzyme that catalyzes BaP-quinone detoxification. Aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor-2 (Nrf2) are transcription factors that control NQO1 expression. Here, we investigated the effects of catalase overexpression on NQO1, Nrf2, and AhR expression. The levels of NQO1 mRNA and protein were comparable in MAECs isolated from wild-type and transgenic mice that overexpress human catalase (hCatTg). BaP treatment increased NQO1 mRNA and protein levels in both groups, with a significantly greater induction in hCatTg MAECs than in wild-type cells. BaP-induced NQO1 promoter activity was dramatically higher in hCatTg MAECs than in wild-type cells. Our data also showed that the basal level of AhR and the BaP-induced level of Nrf2 were significantly higher in hCatTg MAECs than in wild-type cells. Inhibition of specificity protein-1 (Sp1) binding to the AhR promoter region by mithramycin A reversed the enhancing effect of catalase overexpression on AhR expression. Knockdown of AhR by RNA interference diminished BaP-induced expression of Nrf2 and NQO1. Knockdown of Nrf2 significantly decreased NQO1 mRNA and protein levels in cells with or without BaP treatment. NQO1 promoter activity was abrogated by mutation of the Nrf2-binding site in this promoter. In contrast, mutation of the AhR-binding site in the NQO1 promoter did not affect the promoter activity. These results suggest that catalase overexpression upregulates BaP-induced NQO1 expression by enhancing the Sp1-AhR-Nrf2 signaling cascade.


Endothelium-journal of Endothelial Cell Research | 2006

Different Cytotoxic Injuries Induced by Lysophosphatidylcholine and 7-Ketocholesterol in Mouse Endothelial Cells

LiChun Zhou; MingJian Shi; ZhongMao Guo; Wendy Brisbon; Richard L. Hoover; Hong Yang

Lysophosphatidylcholine (LPC) and 7-ketocholesterol (7-KC) are two key components of oxidized low-density lipoprotein (oxLDL) and have been shown to injure endothelial cells derived from various species. This report examines LPC- and 7-KC-induced cell death in mouse aorta endothelial cells (MAECs). The presence and the mechanism of cell death were assessed with morphological criteria, Hoechst 33342 and propidium iodide fluorescence staining, and caspase-3 activity. The authors observed that 7-KC induced cell shrinkage, nuclear condensation, and caspase-3 activity. In contrast, LPC induced membrane rupture, nuclear expansion, and cell lysis. In addition, 7-KC induced a transient increase, whereas LPC induced a sustained increase in intracellular Ca2+ levels and production of reactive oxygen species (ROS). Antioxidants and calcium antagonists attenuated both 7-KC- and LPC-induced cell death. These findings suggest that 7-KC and LPC injure MAECs through differential mechanisms; LPC induces necrosis, 7-KC induces apoptosis, and the increase in intracellular Ca2+ levels and production of ROS are common mechanisms for these cytotoxic injuries.


Journal of Biological Chemistry | 2012

Up-regulation of ATP Binding Cassette Transporter A1 Expression by Very Low Density Lipoprotein Receptor and Apolipoprotein E Receptor 2

Xinping Chen; ZhongMao Guo; Emmanuel U. Okoro; Hongfeng Zhang; LiChun Zhou; Xinhua Lin; Allman T. Rollins; Hong Yang

Background: VLDLR and apoER2 are receptors for reelin and apoE. Results: Reelin or apoE3 induced macrophage ABCA1 expression and increased cholesterol efflux. Down-regulation of VLDLR, apoER2, or inhibition of Dab1, PI3K, PKCζ and Sp1 attenuated reelin- or apoE3-induced ABCA1 expression. Conclusion: Activation of VLDLR- and apoER2-mediated signaling up-regulates ABCA1 expression. Significance: Up-regulation of ABCA1 expression is a novel function of VLDLR and apoER2. Activation of very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (apoER2) results in either pro- or anti-atherogenic effects depending on the ligand. Using reelin and apoE as ligands, we studied the impact of VLDLR- and apoER2-mediated signaling on the expression of ATP binding cassette transporter A1 (ABCA1) and cholesterol efflux using RAW264.7 cells. Treatment of these mouse macrophages with reelin or human apoE3 significantly increased ABCA1 mRNA and protein levels, and apoAI-mediated cholesterol efflux. In addition, both reelin and apoE3 significantly increased phosphorylated disabled-1 (Dab1), phosphatidylinositol 3-kinase (PI3K), protein kinase Cζ (PKCζ), and specificity protein 1 (Sp1). This reelin- or apoER2-mediated up-regulation of ABCA1 expression was suppressed by 1) knockdown of Dab1, VLDLR, and apoER2 with small interfering RNAs (siRNAs), 2) inhibition of PI3K and PKC with kinase inhibitors, 3) overexpression of kinase-dead PKCζ, and 4) inhibition of Sp1 DNA binding with mithramycin A. Activation of the Dab1-PI3K signaling pathway has been implicated in VLDLR- and apoER2-mediated cellular functions, whereas the PI3K-PKCζ-Sp1 signaling cascade has been implicated in the regulation of ABCA1 expression induced by apoE/apoB-carrying lipoproteins. Taken together, these data support a model in which activation of VLDLR and apoER2 by reelin and apoE induces ABCA1 expression and cholesterol efflux via a Dab1-PI3K-PKCζ-Sp1 signaling cascade.


Journal of Lipid Research | 2007

Apolipoprotein E-deficient lipoproteins induce foam cell formation by downregulation of lysosomal hydrolases in macrophages

DongFang Wu; Chakradhari Sharan; Hong Yang; J. Shawn Goodwin; LiChun Zhou; Gregory A. Grabowski; Hong Du; ZhongMao Guo

Apolipoprotein E (apoE) deficiency has been suggested to induce foam cell formation. Using lipoproteins obtained from wild-type mice and apoE-deficient mice expressing apoB-48 but not apoB-100, we studied apoE-deficient lipoprotein-induced changes in lipoprotein catabolism and protein expression in mouse peritoneal macrophages (MPMs). Our data demonstrate that incubation of MPMs with apoE-deficient lipoproteins induced intracellular lipoprotein, cholesteryl ester, and triglyceride accumulation, which was associated with a time-related decline in apoE-deficient lipoprotein degradation in MPMs. Confocal microscopy analysis indicated that the accumulated lipids were localized in lysosomes. ApoE-deficient lipoproteins reduced the protein levels of lysosomal acid lipase, cathepsin B, and cation-dependent mannose 6 phosphate receptor (MPR46). Exogenous apoE reduced apoE-deficient lipoprotein-induced lipid accumulation and attenuated the suppressive effect of apoE-deficient lipoproteins on lysosomal hydrolase and MPR46 expression. Although oxidized lipoproteins also increased lipid contents in MPMs, exogenous apoE could not attenuate oxidized lipoprotein-induced lipid accumulation. Our in vivo studies also showed that feeding apoE-deficient mice a high-fat diet resulted in cholesteryl ester and triglyceride accumulation and reduced lysosomal hydrolase expression in MPMs. These data suggest that apoE-deficient lipoproteins increase cellular lipid contents through pathways different from those activated by oxidized lipoproteins and that reducing lysosomal hydrolases in macrophages might be a mechanism by which apoE-deficient lipoproteins result in intralysosomal lipoprotein accumulation, thereby inducing foam cell formation.


Journal of Biological Chemistry | 2011

Transcriptional Regulation of ATP-binding Cassette Transporter A1 Expression by a Novel Signaling Pathway

Xinping Chen; Yanfeng Zhao; ZhongMao Guo; LiChun Zhou; Emmanuel U. Okoro; Hong Yang

ATP-binding cassette transporter A1 (ABCA1) is a membrane-bound protein that regulates the efflux of cholesterol derived from internalized lipoproteins. Using a mouse macrophage cell line, this report studied the impact of low-density lipoproteins (LDL) on ABCA1 expression and the signaling pathway responsible for lipoprotein-induced ABCA1 expression. Our data demonstrated that treatment of macrophages with LDL increased ABCA1 mRNA and protein levels 4.3- and 3.5-fold, respectively. LDL also induced an ∼2-fold increase in macrophage surface expression of ABCA1 and a 14-fold-increase in apolipoprotein AI-mediated cholesterol efflux. In addition, LDL significantly increased the level of phosphorylated specificity protein 1 (Sp1) and the amount of Sp1 bound to the ABCA1 promoter without alteration in total Sp1 protein level. Mutation of the Sp1 binding site in the ABCA1 promoter and inhibition of Sp1 DNA binding with mithramycin A suppressed the ABCA1 promoter activity and reduced the ABCA1 expression level induced by LDL. LDL treatment also elevated protein kinase C-ζ (PKC-ζ) phosphorylation and induced PKC-ζ binding with Sp1. Inhibition of PKC-ζ with kinase inhibitors or overexpression of kinase-dead PKC-ζ attenuated Sp1 phosphorylation and ABCA1 expression induced by LDL. These results demonstrate for the first time that activation of the PKCζ-Sp1 signaling cascade is a mechanism for regulation of LDL-induced ABCA1 expression.


Journal of Biological Chemistry | 2013

A Novel Transcription Mechanism Activated by Ethanol: INDUCTION OF Slc7a11 GENE EXPRESSION VIA INHIBITION OF THE DNA-BINDING ACTIVITY OF TRANSCRIPTIONAL REPRESSOR OCTAMER-BINDING TRANSCRIPTION FACTOR 1 (OCT-1)*

Xinghua Lin; Hong Yang; Hongfeng Zhang; LiChun Zhou; ZhongMao Guo

Background: The regulatory role of ethanol on gene expression has not been fully defined. Results: Ethanol reduces OCT-1 binding to the Slc7a11 promoter. Mutation of the OCT-1 binding motif abolishes ethanol-induced Slc7a11 promoter activity. Conclusion: Ethanol increases Slc7a11 expression by reducing OCT-1 binding to its promoter. Significance: Ethanol up-regulates gene expression by inhibiting the DNA binding activity of transcriptional repressor(s). Solute carrier family 7, member 11 (Slc7a11) is a plasma membrane cystine/glutamate exchanger that provides intracellular cystine to produce glutathione, a major cellular antioxidant. Oxidative and endoplasmic reticulum stresses up-regulate Slc7a11 expression by activation of nuclear factor erythroid 2-related factor 2 and transcription factor 4. This study examined the effect of ethanol on Slc7a11 expression and the underlying mechanism involved. Treatment of mouse hepatic stellate cells with ethanol significantly increased Slc7a11 mRNA and protein levels. Deletion of a 20-bp DNA sequence between −2044 to −2024 upstream of the transcription start site significantly increased basal activity and completely abolished the ethanol-induced activity of the Slc7a11 promoter. This deletion did not affect Slc7a11 promoter activity induced by oxidative or endoplasmic reticulum stress. DNA sequence analysis revealed a binding motif for octamer-binding transcription factor 1 (OCT-1) in the deleted fragment. Mutation of this OCT-1 binding motif resulted in a similar effect as the deletion experiment, i.e. it increased the basal promoter activity and abolished the response to ethanol. Ethanol exposure significantly inhibited OCT-1 binding to the Slc7a11 promoter region, although it did not alter OCT-1 mRNA and protein levels. OCT-1 reportedly functions as either a transcriptional enhancer or repressor, depending on the target genes. Results from this study suggest that OCT-1 functions as a repressor on the Slc7a11 promoter and that ethanol inhibits OCT-1 binding to the Slc7a11 promoter, thereby increasing Slc7a11 expression. Taken together, inhibition of the DNA binding activity of transcriptional repressor OCT-1 is a mechanism by which ethanol up-regulates Slc711 expression.

Collaboration


Dive into the LiChun Zhou's collaboration.

Top Co-Authors

Avatar

Hong Yang

Meharry Medical College

View shared research outputs
Top Co-Authors

Avatar

ZhongMao Guo

Meharry Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinghua Lin

Meharry Medical College

View shared research outputs
Top Co-Authors

Avatar

Yanfeng Zhao

Meharry Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinping Chen

Meharry Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge