Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Licia Colli is active.

Publication


Featured researches published by Licia Colli.


Current Biology | 2008

Mitochondrial genomes of extinct aurochs survive in domestic cattle

Alessandro Achilli; Anna Olivieri; Marco Pellecchia; Cristina Uboldi; Licia Colli; Nadia Al-Zahery; Matteo Accetturo; Maria Pala; Baharak Hooshiar Kashani; Ugo A. Perego; Vincenza Battaglia; Simona Fornarino; Javad Kalamati; Massoud Houshmand; Riccardo Negrini; Ornella Semino; Martin B. Richards; Vincent Macaulay; L. Ferretti; Hans-Jürgen Bandelt; Paolo Ajmone-Marsan; Antonio Torroni

Archaeological and genetic evidence suggest that modern cattle might result from two domestication events of aurochs (Bos primigenius) in southwest Asia, which gave rise to taurine (Bos taurus) and zebuine (Bos indicus) cattle, respectively [1,2,3]. However, independent domestication in Africa [4,5] and East Asia [6] has also been postulated and ancient DNA data raise the possibility of local introgression from wild aurochs [7,8,9]. Here, we show by sequencing entire mitochondrial genomes from modern cattle that extinct wild aurochsen from Europe occasionally transmitted their mitochondrial DNA (mtDNA) to domesticated taurine breeds. However, the vast majority of mtDNAs belong either to haplogroup I (B. indicus) or T (B. taurus). The sequence divergence within haplogroup T is extremely low (eight-fold less than in the human mtDNA phylogeny [10]), indicating a narrow bottleneck in the recent evolutionary history of B. taurus. MtDNAs of haplotype T fall into subclades whose ages support a single Neolithic domestication event for B. taurus in the Near East, 911 thousand years ago (kya).


Ecology Letters | 2012

Genetic diversity in widespread species is not congruent with species richness in alpine plant communities

Pierre Taberlet; Niklaus E. Zimmermann; Thorsten Englisch; Andreas Tribsch; Rolf Holderegger; Nadir Alvarez; Harald Niklfeld; Gheorghe Coldea; Zbigniew Mirek; Atte Moilanen; Wolfgang Ahlmer; Paolo Ajmone Marsan; Enzo Bona; Maurizio Bovio; Philippe Choler; Elżbieta Cieślak; Licia Colli; Vasile Cristea; Jean‐Pierre Dalmas; Božo Frajman; Luc Garraud; Myriam Gaudeul; Ludovic Gielly; Walter Gutermann; Nejc Jogan; Alexander A. Kagalo; Grażyna Korbecka; Philippe Küpfer; Benoît Lequette; Dominik Roman Letz

The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.


Animal Genetics | 2010

Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources

Paul J. Boettcher; Michèle Tixier-Boichard; M.A. Toro; Henner Simianer; Herwin Eding; G. Gandini; Stéphane Joost; D. Garcia; Licia Colli; Paolo Ajmone-Marsan

The genetic diversity of the worlds livestock populations is decreasing, both within and across breeds. A wide variety of factors has contributed to the loss, replacement or genetic dilution of many local breeds. Genetic variability within the more common commercial breeds has been greatly decreased by selectively intense breeding programmes. Conservation of livestock genetic variability is thus important, especially when considering possible future changes in production environments. The world has more than 7500 livestock breeds and conservation of all of them is not feasible. Therefore, prioritization is needed. The objective of this article is to review the state of the art in approaches for prioritization of breeds for conservation, particularly those approaches that consider molecular genetic information, and to identify any shortcomings that may restrict their application. The Weitzman method was among the first and most well-known approaches for utilization of molecular genetic information in conservation prioritization. This approach balances diversity and extinction probability to yield an objective measure of conservation potential. However, this approach was designed for decision making across species and measures diversity as distinctiveness. For livestock, prioritization will most commonly be performed among breeds within species, so alternatives that measure diversity as co-ancestry (i.e. also within-breed variability) have been proposed. Although these methods are technically sound, their application has generally been limited to research studies; most existing conservation programmes have effectively primarily based decisions on extinction risk. The development of user-friendly software incorporating these approaches may increase their rate of utilization.


Proceedings of the Royal Society of London B: Biological Sciences | 2007

The mystery of Etruscan origins: novel clues from Bos taurus mitochondrial DNA

Marco Pellecchia; Riccardo Negrini; Licia Colli; Massimiliano Patrini; Elisabetta Milanesi; Alessandro Achilli; Giorgio Bertorelle; Luigi Luca Cavalli-Sforza; Alberto Piazza; Antonio Torroni; Paolo Ajmone-Marsan

The Etruscan culture developed in Central Italy (Etruria) in the first millennium BC and for centuries dominated part of the Italian Peninsula, including Rome. The history of the Etruscans is at the roots of Mediterranean culture and civilization, but their origin is still debated: local or Eastern provenance? To shed light on this mystery, bovine and human mitochondrial DNAs (mtDNAs) have been investigated, based on the well-recognized strict legacy which links human and livestock populations. In the region corresponding to ancient Etruria (Tuscany, Central Italy), several Bos taurus breeds have been reared since historical times. These breeds have a strikingly high level of mtDNA variation, which is found neither in the rest of Italy nor in Europe. The Tuscan bovines are genetically closer to Near Eastern than to European gene pools and this Eastern genetic signature is paralleled in modern human populations from Tuscany, which are genetically close to Anatolian and Middle Eastern ones. The evidence collected corroborates the hypothesis of a common past migration: both humans and cattle reached Etruria from the Eastern Mediterranean area by sea. Hence, the Eastern origin of Etruscans, first claimed by the classic historians Herodotus and Thucydides, receives strong independent support. As the Latin philosopher Seneca wrote: Asia Etruscos sibi vindicat (Asia claims the Etruscans back).


PLOS ONE | 2010

The Enigmatic Origin of Bovine mtDNA Haplogroup R: Sporadic Interbreeding or an Independent Event of Bos primigenius Domestication in Italy?

Silvia Bonfiglio; Alessandro Achilli; Anna Olivieri; Riccardo Negrini; Licia Colli; Luigi Liotta; Paolo Ajmone-Marsan; Antonio Torroni; L. Ferretti

Background When domestic taurine cattle diffused from the Fertile Crescent, local wild aurochsen (Bos primigenius) were still numerous. Moreover, aurochsen and introduced cattle often coexisted for millennia, thus providing potential conditions not only for spontaneous interbreeding, but also for pastoralists to create secondary domestication centers involving local aurochs populations. Recent mitochondrial genomes analyses revealed that not all modern taurine mtDNAs belong to the shallow macro-haplogroup T of Near Eastern origin, as demonstrated by the detection of three branches (P, Q and R) radiating prior to the T node in the bovine phylogeny. These uncommon haplogroups represent excellent tools to evaluate if sporadic interbreeding or even additional events of cattle domestication occurred. Methodology The survey of the mitochondrial DNA (mtDNA) control-region variation of 1,747 bovine samples (1,128 new and 619 from previous studies) belonging to 37 European breeds allowed the identification of 16 novel non-T mtDNAs, which after complete genome sequencing were confirmed as members of haplogroups Q and R. These mtDNAs were then integrated in a phylogenetic tree encompassing all available P, Q and R complete mtDNA sequences. Conclusions Phylogenetic analyses of 28 mitochondrial genomes belonging to haplogroups P (N = 2), Q (N = 16) and R (N = 10) together with an extensive survey of all previously published mtDNA datasets revealed major similarities between haplogroups Q and T. Therefore, Q most likely represents an additional minor lineage domesticated in the Near East together with the founders of the T subhaplogroups. Whereas, haplogroup R is found, at least for the moment, only in Italy and nowhere else, either in modern or ancient samples, thus supporting an origin from European aurochsen. Haplogroup R could have been acquired through sporadic interbreeding of wild and domestic animals, but our data do not rule out the possibility of a local and secondary event of B. primigenius domestication in Italy.


Molecular Biology and Evolution | 2014

Adaptations to Climate-Mediated Selective Pressures in Sheep

Feng-Hua Lv; Saif Agha; Juha Kantanen; Licia Colli; Sylvie Stucki; James W. Kijas; Stéphane Joost; Meng-Hua Li; Paolo Ajmone Marsan

Following domestication, sheep (Ovis aries) have become essential farmed animals across the world through adaptation to a diverse range of environments and varied production systems. Climate-mediated selective pressure has shaped phenotypic variation and has left genetic “footprints” in the genome of breeds raised in different agroecological zones. Unlike numerous studies that have searched for evidence of selection using only population genetics data, here, we conducted an integrated coanalysis of environmental data with single nucleotide polymorphism (SNP) variation. By examining 49,034 SNPs from 32 old, autochthonous sheep breeds that are adapted to a spectrum of different regional climates, we identified 230 SNPs with evidence for selection that is likely due to climate-mediated pressure. Among them, 189 (82%) showed significant correlation (P ≤ 0.05) between allele frequency and climatic variables in a larger set of native populations from a worldwide range of geographic areas and climates. Gene ontology analysis of genes colocated with significant SNPs identified 17 candidates related to GTPase regulator and peptide receptor activities in the biological processes of energy metabolism and endocrine and autoimmune regulation. We also observed high linkage disequilibrium and significant extended haplotype homozygosity for the core haplotype TBC1D12-CH1 of TBC1D12. The global frequency distribution of the core haplotype and allele OAR22_18929579-A showed an apparent geographic pattern and significant (P ≤ 0.05) correlations with climatic variation. Our results imply that adaptations to local climates have shaped the spatial distribution of some variants that are candidates to underpin adaptive variation in sheep.


Animal Genetics | 2009

Assessing SNP markers for assigning individuals to cattle populations

Riccardo Negrini; Letizia Nicoloso; P. Crepaldi; Elisabetta Milanesi; Licia Colli; F. Chegdani; Lorraine Pariset; S. Dunner; Hubert Levéziel; John L. Williams; P. Ajmone Marsan

The effectiveness of single nucleotide polymorphisms (SNPs) for the assignment of cattle to their source breeds was investigated by analysing a panel of 90 SNPs assayed on 24 European breeds. Breed assignment was performed by comparing the Bayesian and frequentist methods implemented in the STRUCTURE 2.2 and GENECLASS 2 software programs. The use of SNPs for the reallocation of known individuals to their breeds of origin and the assignment of unknown individuals was tested. In the reallocation tests, the methods implemented in STRUCTURE 2.2 performed better than those in GENECLASS 2, with 96% vs. 85% correct assignments respectively. In contrast, the methods implemented in GENECLASS 2 showed a greater correct assignment rate in allocating animals treated as unknowns to a reference dataset (62% vs. 51% and 80% vs. 65% in field tests 1 and 2 respectively). These results demonstrate that SNPs are suitable for the assignment of individuals to reference breeds. The results also indicate that STRUCTURE 2.2 and GENECLASS 2 can be complementary tools to assess breed integrity and assignment. Our findings also stress the importance of a high-quality reference dataset in allocation studies.


Molecular Ecology Resources | 2017

High performance computation of landscape genomic models including local indicators of spatial association.

Sylvie Stucki; Pablo Orozco-terWengel; Brenna R. Forester; Solange Duruz; Licia Colli; Charles Masembe; Riccardo Negrini; Erin L. Landguth; Matthew R. Jones; Michael William Bruford; Pierre Taberlet; Stéphane Joost

With the increasing availability of both molecular and topo‐climatic data, the main challenges facing landscape genomics – that is the combination of landscape ecology with population genomics – include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present samβada, an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large‐scale genetic and environmental data sets. samβada identifies candidate loci using genotype–environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models to lower the occurrences of spurious genotype–environment associations. In addition, samβada calculates local indicators of spatial association for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to detect signatures of local adaptation with samβada, bayenv, lfmm and an FST outlier method (FDIST approach in arlequin) and compare their results. samβada – an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada – outperforms other approaches and better suits whole‐genome sequence data processing.


Animal Genetics | 2010

Integrating geo-referenced multiscale and multidisciplinary data for the management of biodiversity in livestock genetic resources

Stéphane Joost; Licia Colli; Philippe Baret; José Fernando Garcia; Paul J. Boettcher; Michèle Tixier-Boichard; Paolo Ajmone-Marsan

In livestock genetic resource conservation, decision making about conservation priorities is based on the simultaneous analysis of several different criteria that may contribute to long-term sustainable breeding conditions, such as genetic and demographic characteristics, environmental conditions, and role of the breed in the local or regional economy. Here we address methods to integrate different data sets and highlight problems related to interdisciplinary comparisons. Data integration is based on the use of geographic coordinates and Geographic Information Systems (GIS). In addition to technical problems related to projection systems, GIS have to face the challenging issue of the non homogeneous scale of their data sets. We give examples of the successful use of GIS for data integration and examine the risk of obtaining biased results when integrating datasets that have been captured at different scales.


Environmental Biology of Fishes | 2009

Molecular phylogeny of the blind cavefish Phreatichthys andruzzii and Garra barreimiae within the family Cyprinidae

Licia Colli; Annalisa Paglianti; Roberto Berti; G. Gandolfi; James Tagliavini

The phylogenetic relationships of two cavefish, Phreatichthys andruzzii and Garra barreimiae, belonging to the family Cyprinidae, were investigated by sequencing the mitochondrial cytochrome b gene. These cavefish species are native to Somalia (eastern Africa) and Oman (southeastern Arabian peninsula), respectively, and so far no molecular support to their taxonomy and phylogenetic position was ever provided. The analysis of cytochrome b sequences showed that the species are monophyletic taxa, closely related to each other and to other species of the genus Garra. Molecular clock calculations allowed to date the origin of these hypogaean species back to the Plio-Pleistocene and support the hypothesis that African cyprinids originated from Miocenic immigrations of Asian ancestors.

Collaboration


Dive into the Licia Colli's collaboration.

Top Co-Authors

Avatar

Paolo Ajmone-Marsan

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Riccardo Negrini

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Stéphane Joost

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Marco Pellecchia

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Marco Milanesi

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

R. Negrini

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Pierre Taberlet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge