Licio Collavin
University of Trieste
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Licio Collavin.
Nature | 2012
Claudia Carrieri; Laura Cimatti; Marta Biagioli; Anne Beugnet; Silvia Zucchelli; Stefania Fedele; Elisa Pesce; Isidre Ferrer; Licio Collavin; Claudio Santoro; Alistair R. R. Forrest; Piero Carninci; Stefano Biffo; Elia Stupka; Stefano Gustincich
Most of the mammalian genome is transcribed. This generates a vast repertoire of transcripts that includes protein-coding messenger RNAs, long non-coding RNAs (lncRNAs) and repetitive sequences, such as SINEs (short interspersed nuclear elements). A large percentage of ncRNAs are nuclear-enriched with unknown function. Antisense lncRNAs may form sense–antisense pairs by pairing with a protein-coding gene on the opposite strand to regulate epigenetic silencing, transcription and mRNA stability. Here we identify a nuclear-enriched lncRNA antisense to mouse ubiquitin carboxy-terminal hydrolase L1 (Uchl1), a gene involved in brain function and neurodegenerative diseases. Antisense Uchl1 increases UCHL1 protein synthesis at a post-transcriptional level, hereby identifying a new functional class of lncRNAs. Antisense Uchl1 activity depends on the presence of a 5′ overlapping sequence and an embedded inverted SINEB2 element. These features are shared by other natural antisense transcripts and can confer regulatory activity to an artificial antisense to green fluorescent protein. Antisense Uchl1 function is under the control of stress signalling pathways, as mTORC1 inhibition by rapamycin causes an increase in UCHL1 protein that is associated to the shuttling of antisense Uchl1 RNA from the nucleus to the cytoplasm. Antisense Uchl1 RNA is then required for the association of the overlapping sense protein-coding mRNA to active polysomes for translation. These data reveal another layer of gene expression control at the post-transcriptional level.
Cell Death & Differentiation | 2010
Licio Collavin; Andrea Lunardi; G Del Sal
The tumor suppressor p53 is a central hub in a molecular network controlling cell proliferation and death in response to potentially oncogenic conditions, and a wide array of covalent modifications and protein interactions modulate the nuclear and cytoplasmic activities of p53. The p53 relatives, p73 and p63, are entangled in the same regulatory network, being subject at least in part to the same modifications and interactions that convey signals on p53, and actively contributing to the resulting cellular output. The emerging picture is that of an interconnected pathway, in which all p53-family proteins are involved in the response to oncogenic stress and physiological inputs. Therefore, common and specific interactors of p53-family proteins can have a wide effect on function and dysfunction of this pathway. Many years of research have uncovered an impressive number of p53-interacting proteins, but much less is known about protein interactions of p63 and p73. Yet, many interactors may be shared by multiple p53-family proteins, with similar or different effects. In this study we review shared interactors of p53-family proteins with the aim to encourage research into this field; this knowledge promises to unveil regulatory elements that could be targeted by a new generation of molecules, and allow more efficient use of currently available drugs for cancer treatment.
Molecular Cell | 2012
Monika S. Kowalczyk; Jim R. Hughes; David Garrick; Magnus Lynch; Jacqueline A. Sharpe; Jacqueline A. Sloane-Stanley; Simon J. McGowan; Marco Gobbi; Mona Hosseini; Douglas Vernimmen; Jill M. Brown; Nicola E. Gray; Licio Collavin; Richard J. Gibbons; Jonathan Flint; Stephen Taylor; Veronica J. Buckle; Thomas A. Milne; William G. Wood; Douglas R. Higgs
A substantial amount of organismal complexity is thought to be encoded by enhancers which specify the location, timing, and levels of gene expression. In mammals there are more enhancers than promoters which are distributed both between and within genes. Here we show that activated, intragenic enhancers frequently act as alternative tissue-specific promoters producing a class of abundant, spliced, multiexonic poly(A)(+) RNAs (meRNAs) which reflect the host genes structure. meRNAs make a substantial and unanticipated contribution to the complexity of the transcriptome, appearing as alternative isoforms of the host gene. The low protein-coding potential of meRNAs suggests that many meRNAs may be byproducts of enhancer activation or underlie as-yet-unidentified RNA-encoded functions. Distinguishing between meRNAs and mRNAs will transform our interpretation of dynamic changes in transcription both at the level of individual genes and of the genome as a whole.
Carcinogenesis | 2012
Dawid Walerych; Marco Napoli; Licio Collavin; Giannino Del Sal
Breast cancer is the most frequent invasive tumor diagnosed in women, causing over 400 000 deaths yearly worldwide. Like other tumors, it is a disease with a complex, heterogeneous genetic and biochemical background. No single genomic or metabolic condition can be regarded as decisive for its formation and progression. However, a few key players can be pointed out and among them is the TP53 tumor suppressor gene, commonly mutated in breast cancer. In particular, TP53 mutations are exceptionally frequent and apparently among the key driving factors in triple negative breast cancer —the most aggressive breast cancer subgroup—whose management still represents a clinical challenge. The majority of TP53 mutations result in the substitution of single aminoacids in the central region of the p53 protein, generating a spectrum of variants (’mutant p53s’, for short). These mutants lose the normal p53 oncosuppressive functions to various extents but can also acquire oncogenic properties by gain-of-function mechanisms. This review discusses the molecular processes translating gene mutations to the pathologic consequences of mutant p53 tumorigenic activity, reconciling cell and animal models with clinical outcomes in breast cancer. Existing and speculative therapeutic methods targeting mutant p53 are also discussed, taking into account the overlap of mutant and wild-type p53 regulatory mechanisms and the crosstalk between mutant p53 and other oncogenic pathways in breast cancer. The studies described here concern breast cancer models and patients—unless it is indicated otherwise and justified by the importance of data obtained in other models.
The EMBO Journal | 1998
René Utrera; Licio Collavin; Dejan Lazarevic; Domenico Delia; Claudio Schneider
Wild‐type (wt) p53 can act as a sequence‐specific transcriptional activator and it is believed that p53 elicits at least part of its biological effects by regulating the expression of specific target genes. By using a differential subtractive hybridization approach in a murine cell line stably transfected with a temperature‐sensitive p53 mutant (Val135), we isolated a set of genes markedly induced by wt p53. One of them, provisionally named B99, was further characterized; its transcriptional induction was dependent on wt p53 function and the corresponding protein product was shown to accumulate after DNA damage in different cell types. Immunofluorescence analysis located the B99 protein to the microtubule network. Flow cytometry revealed that upon activation of p53 function the endogenous B99 protein was selectively induced in the G2 fraction of the cell population. When B99 was ectopically expressed in p53‐null murine fibroblasts, B99‐transfected cells displayed an increased fraction with a 4N DNA content, indicative of interference with G2 phase progression. Taken together these data suggest that B99 might play a role in mediating specific biological activities of wt p53 during the G2 phase.
Development | 2003
Licio Collavin; Marc W. Kirschner
The prevailing model of dorsal ventral patterning of the amphibian embryo predicts that the prospective mesoderm is regionalized at gastrulation in response to a gradient of signals. This gradient is established by diffusible BMP and Wnt inhibitors secreted dorsally in the Spemann organizer. An interesting question is whether ventrolateral tissue passively reads graded levels of ventralizing signals, or whether local self-organizing regulatory circuits may exist on the ventral side to control cell behavior and differentiation at a distance from the Organizer. We provide evidence that sizzled, a secreted Frizzled-related protein expressed ventrally during and after gastrulation, functions in a negative feedback loop that limits allocation of mesodermal cells to the extreme ventral fate, with direct consequences for morphogenesis and formation of the blood islands. Morpholino-mediated knockdown of Sizzled protein results in expansion of ventral posterior mesoderm and the ventral blood islands, indicating that this negative regulation is required for proper patterning of the ventral mesoderm. The biochemical activity of sizzled is apparently very different from that of other secreted Frizzled-related proteins, and does not involve inhibition of Wnt8. Our data are consistent with the existence of some limited self-organizing properties of the extreme ventral mesoderm.
Molecular Cell | 2014
Giulio Di Minin; Arianna Bellazzo; Marco Dal Ferro; Giulia Chiaruttini; Simona Nuzzo; Silvio Bicciato; Silvano Piazza; Damiano Rami; Roberta Bulla; Roberta Sommaggio; Antonio Rosato; Giannino Del Sal; Licio Collavin
Inflammation is a significant factor in cancer development, and a molecular understanding of the parameters dictating the impact of inflammation on cancers could significantly improve treatment. The tumor suppressor p53 is frequently mutated in cancer, and p53 missense mutants (mutp53) can acquire oncogenic properties. We report that cancer cells with mutp53 respond to inflammatory cytokines increasing their invasive behavior. Notably, this action is coupled to expression of chemokines that can expose the tumor to host immunity, potentially affecting response to therapy. Mechanistically, mutp53 fuels NF-κB activation while it dampens activation of ASK1/JNK by TNFα, and this action depends on mutp53 binding and inhibiting the tumor suppressor DAB2IP in the cytoplasm. Interfering with such interaction reduced aggressiveness of cancer cells in xenografts. This interaction is an unexplored mechanism by which mutant p53 can influence tumor evolution, with implications for our understanding of the complex role of inflammation in cancer.
Oncogene | 1999
Licio Collavin; Dejan Lazarevic; René Utrera; Stefania Marzinotto; Martin Monte; Claudio Schneider
Six novel p53-inducible transcripts were recently cloned from Val5, a murine cell line stably expressing a temperature-sensitive p53 allele. One of the isolated clones represented a novel isoform of cytosolic adenylate kinase (AK1), a highly conserved monomeric enzyme involved in cellular homeostasis of adenine nucleotides. The corresponding protein, which we named AK1β, was specifically induced upon activation of wt p53 in Val5 cells. The AK1β protein differs from cytoplasmic AK1 by having 18 extra amino acids at the N-terminus. The extra residues in AK1β provide a consensus signal for N-terminal myristoylation; as expected, AK1β was shown to localize to the plasma membrane. The human AK1 gene contains several consensus p53 binding sites and we report that p53-dependent induction of the alternative AK1β transcript also occurs in human cells. By using antisense ablation experiments in Val5 fibroblasts we show that AK1β plays a relevant role in the establishment of reversible cell-cycle arrest as induced by p53 in these cells. These findings suggest that within a p53-dependent genetic program, a specific isoform of adenylate kinase has a previously undescribed growth-regulatory function, which might not necessarily require its best characterized biochemical activity.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Andrea Lunardi; Giulio Di Minin; Paolo Provero; Marco Dal Ferro; Marcello Carotti; Giannino Del Sal; Licio Collavin
The genome of the fruitfly Drosophila melanogaster contains a single p53-like protein, phylogenetically related to the ancestor of the mammalian p53 family of tumor suppressors. We reasoned that a comprehensive map of the protein interaction profile of Drosophila p53 (Dmp53) might help identify conserved interactions of the entire p53 family in man. Using a genome-scale in vitro expression cloning approach, we identified 91 previously unreported Dmp53 interactors, considerably expanding the current Drosophila p53 interactome. Looking for evolutionary conservation of these interactions, we tested 41 mammalian orthologs and found that 37 bound to one or more p53-family members when overexpressed in human cells. An RNAi-based functional assay for modulation of the p53 pathway returned five positive hits, validating the biological relevance of these interactions. One p53 interactor is GTPBP4, a nucleolar protein involved in 60S ribosome biogenesis. We demonstrate that GTPBP4 knockdown induces p53 accumulation and activation in the absence of nucleolar disruption. In breast tumors with wild-type p53, increased expression of GTPBP4 correlates with reduced patient survival, emphasizing a potential relevance of this regulatory axis in cancer.
PLOS ONE | 2012
Sandra Vilotti; Marta Codrich; Marco Dal Ferro; Milena Pinto; Isidro Ferrer; Licio Collavin; Stefano Gustincich; Silvia Zucchelli
Mutations in PARK7/DJ-1 gene are associated to autosomal recessive early onset forms of Parkinsons disease (PD). Although large gene deletions have been linked to a loss-of-function phenotype, the pathogenic mechanism of missense mutations is less clear. The L166P mutation causes misfolding of DJ-1 protein and its degradation. L166P protein may also accumulate into insoluble cytoplasmic aggregates with a mechanism facilitated by the E3 ligase TNF receptor associated factor 6 (TRAF6). Upon proteasome impairment L166P activates the JNK/p38 MAPK apoptotic pathway by its interaction with TRAF and TNF Receptor Associated Protein (TTRAP). When proteasome activity is blocked in the presence of wild-type DJ-1, TTRAP forms aggregates that are localized to the cytoplasm or associated to nucleolar cavities, where it is required for a correct rRNA biogenesis. In this study we show that in post-mortem brains of sporadic PD patients TTRAP is associated to the nucleolus and to Lewy Bodies, cytoplasmic aggregates considered the hallmark of the disease. In SH-SY5Y neuroblastoma cells, misfolded mutant DJ-1 L166P alters rRNA biogenesis inhibiting TTRAP localization to the nucleolus and enhancing its recruitment into cytoplasmic aggregates with a mechanism that depends in part on TRAF6 activity. This work suggests that TTRAP plays a role in the molecular mechanisms of both sporadic and familial PD. Furthermore, it unveils the existence of an interplay between cytoplasmic and nucleolar aggregates that impacts rRNA biogenesis and involves TRAF6.