Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Licong Yang is active.

Publication


Featured researches published by Licong Yang.


Biomaterials | 2014

Inhibition of tumor growth and vasculature and fluorescence imaging using functiOnalized ruthenium-thiol protected selenium nanoparticles

Dongdong Sun; Yanan Liu; Qianqian Yu; Xiuying Qin; Licong Yang; Yanhui Zhou; Lanmei Chen; Jie Liu

Here we reported the high tumor targeting efficacy of luminescent Ru(II)-thiols protected selenium nanoparticles (Ru-MUA@Se). We have shown that a dual-target inhibitor Ru-MUA@Se directly suppress the tumor growth but also block blood-vessel growth. We also determined that the nanoparticles entered the cells via clathrin-mediated endocytosis pathway. In a xenograft HepG2 tumor model, we found that Ru-MUA@Se effectively inhibited tumor angiogenesis and suppressed tumor growth with low side effects using metronomic chemotherapy with Ru-MUA@Se. In vivo investigation of nanoparticles on nude mice bearing HepG2 cancer xenografts confirmed that Ru-MUA@Se nanoparticles possessed high tumor-targeted fluorescence imaging, exhibited enhanced antitumor efficacy and decreased systemic toxicity. Moreover, Ru-MUA@Se not only significantly induced dose-dependent disruption of mitochondrial membrane potential in HepG2 cells after 24 h treatment, but it also enhanced reactive oxygen species (ROS) generation. Our results suggest that the potential application of these Ru-MUA@Se nanoparticles in targeting cancer imaging and chemotherapy.


ACS Applied Materials & Interfaces | 2014

Epigallocatechin-3-gallate (EGCG)-Stabilized Selenium Nanoparticles Coated with Tet-1 Peptide To Reduce Amyloid-β Aggregation and Cytotoxicity

Jingnan Zhang; Xianbo Zhou; Qianqian Yu; Licong Yang; Dongdong Sun; Yanhui Zhou; Jie Liu

Alzheimers disease (AD), the most common neurodegenerative disease, is caused by an accumulation of amyloid-β (Aβ) plaque deposits in the brains. Evidence is increasingly showing that epigallocatechin-3-gallate (EGCG) can partly protect cells from Aβ-mediated neurotoxicity by inhibiting Aβ aggregation. In order to better understand the process of Aβ aggregation and amyloid fibril disaggregation and reduce the cytotoxicity of EGCG at high doses, we attached EGCG onto the surface of selenium nanoparticles (EGCG@Se). Given the low delivery efficiency of EGCG@Se to the targeted cells and the involvement of selenoprotein in antioxidation and neuroprotection, which are the key factors for preventing the onset and progression of AD, we synthesized EGCG-stabilized selenium nanoparticles coated with Tet-1 peptide (Tet-1-EGCG@Se, a synthetic selenoprotein analogue), considering the affinity of Tet-1 peptide to neurons. We revealed that Tet-1-EGCG@Se can effectively inhibit Aβ fibrillation and disaggregate preformed Aβ fibrils into nontoxic aggregates. In addition, we found that both EGCG@Se and Tet-1-EGCG@Se can label Aβ fibrils with a high affinity, and Tet-1 peptides can significantly enhance the cellular uptake of Tet-1-EGCG@Se in PC12 cells rather than in NIH/3T3 cells.


Acta Biomaterialia | 2015

Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease

Tiantian Yin; Licong Yang; Yanan Liu; Xianbo Zhou; Jing Sun; Jie Liu

UNLABELLED The blood-brain barrier (BBB) is a formidable gatekeeper toward exogenous substances, playing an important role in brain homeostasis and maintaining a healthy microenvironment for complex neuronal activities. However, it also greatly hinders drug permeability into the brain and limits the management of brain diseases. The development of new drugs that show improved transport across the BBB represents a promising strategy for Alzheimers disease (AD) intervention. Whereas, previous study of receptor-mediated endogenous BBB transport systems has focused on a strategy of using transferrin to facilitate brain drug delivery system, a system that still suffers from limitations including synthesis procedure, stability and immunological response. In the present study, we synthetised sialic acid (SA)-modified selenium (Se) nanoparticles conjugated with an alternative peptide-B6 peptide (B6-SA-SeNPs, a synthetic selenoprotein analogue), which shows high permeability across the BBB and has the potential to serve as a novel nanomedicine for disease modification in AD. Laser-scanning confocal microscopy, flow cytometry analysis and inductively coupled plasma-atomic emission spectroscopy ICP-AES revealed high cellular uptake of B6-SA-SeNPs by cerebral endothelial cells (bEnd.3). The transport efficiency of B6-SA-SeNPs was evaluated in a Transwell experiment based on in vitro BBB model. It provided direct evidence for B6-SA-SeNPs crossing the BBB and being absorbed by PC12 cells. Moreover, inhibitory effects of B6-SA-SeNPs on amyloid-β peptide (Aβ) fibrillation could be demonstrated in PC12 cells and bEnd3 cells. B6-SA-SeNPs could not only effectively inhibit Aβ aggregation but could disaggregate preformed Aβ fibrils into non-toxic amorphous oligomers. These results suggested that B6-SA-SeNPs may provide a promising platform, particularly for the application of nanoparticles in the treatment of brain diseases. STATEMENT OF SIGNIFICANCE Alzheimers disease (AD) is the worlds most common form of dementia characterized by intracellular neurofibrillary tangles in the brain. Over the past decades, the blood-brain barrier (BBB) limits access of therapeutic or diagnostic agents into the brain, which greatly hinders the development of new drugs for treating AD. In this work, we evaluated the efficiency of B6-SA-SeNPs across BBB and investigated the interactions between B6-SA-SeNPs and amyloid-β peptide (Aβ). We confirm that B6-SA-SeNPs could provide a promising platform because of its high brain delivery efficiency, anti-amyloid properties and anti-oxidant properties, which may serve as a novel nanomedicine for the application in the treatment of brain diseases.


Journal of Materials Chemistry B | 2014

Se/Ru nanoparticles as inhibitors of metal-induced Aβ aggregation in Alzheimer's disease

Licong Yang; Qingchang Chen; Ying Liu; Jingnan Zhang; Dongdong Sun; Yanhui Zhou; Jie Liu

Amyloid β (Aβ) aggregates are considered as possible targets for therapy of Alzheimers disease (AD). Metal ions play an important role in amyloid aggregation and neurotoxicity in the AD pathogenesis. Disruption of the interactions between these metal ions and peptides holds considerable promise as a therapeutic strategy for AD treatment. In this study, l-Cys-modified Se/Ru nanoparticles (NPs) have been designed as Aβ-binding units to inhibit metal-induced Aβ aggregation. l-Cys was used as both the reducing agent and surface modifier in the formation of SeNPs, RuNPs and Se/RuNPs. We found that RuNPs and Se/RuNPs have a strong affinity toward Aβ species and efficiently suppress extracellular Aβ40 self-assembly and Zn2+-induced fibrillization. Also, Se/RuNPs can suppress the Zn2+-Aβ40 mediated generation of reactive oxygen species (ROS) and their corresponding neurotoxicity in PC12 cells. Intriguingly, SeNPs do not have the same ability as Se/RuNPs. In addition, Se/RuNPs also decrease intracellular Aβ40 fibrillization, but this process does not involve the lysosomal pathway. These results suggest that ruthenium significantly enhances the activity of Se/RuNPs binding to Aβ40. This interaction would block the Zn2+ binding to Aβ40 peptides and lower the concentration of the free monomer, thus decreasing fibrillization. Owing to this, Se/RuNPs may represent a new strategy in AD treatment.


Journal of Inorganic Biochemistry | 2014

Stabilization of G-quadruplex DNA and inhibition of telomerase activity studies of ruthenium(II) complexes

Qian Li; Jingnan Zhang; Licong Yang; Qianqian Yu; Qingchang Chen; Xiuying Qin; Fangling Le; Qianling Zhang; Jie Liu

Two ruthenium(II) complexes [Ru(IP)2(PIP)](ClO4)2·2H2O (1) and [Ru(PIP)2(IP)](ClO4)2·2H2O (2) (IP=imidazole [4, 5-f] [1,10] phenanthroline, PIP=2-phenylimidazo-[4, 5-f][1,10] phenanthroline) have been synthesized and characterized. The quadruplex binding of the compounds was evaluated by emission spectrum, CD spectroscopy, Visual detection assay and FRET (fluorescence resonance energy transfer)-melting assay. The results show that both complexes can induce the stabilization of quadruplex DNA, while complex 1 is a better G-quadruplex binder than complex 2. Furthermore, polymerase chain reaction-stop assay, electrophoretic mobility shift assay, telomerase repeat amplification protocol and MTT (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay demonstrate that complex 1 not only can stabilize dimer forms of the G-quadruplex at low concentrations but also exhibit better inhibitory activity for telomerase and cancer cells.


Biometals | 2013

Ruthenium (II) polypyridyl complexes stabilize the bcl-2 promoter quadruplex and induce apoptosis of Hela tumor cells

Chuan Wang; Qianqian Yu; Licong Yang; Yanyu Liu; Dongdong Sun; Yongchao Huang; Yanhui Zhou; Qianling Zhang; Jie Liu

In the present study, the interaction between GC-rich sequence of bcl-2 gene P1 promoter (Pu39) and two ruthenium (II) polypyridyl complexes, [Ru(bpy)2(tip)]2+ (1) and [Ru(phen)2(tip)]2+ (2), was investigated by UV–Visible, fluorescence spectroscopy, circular dichroism, fluorescence resonance energy transfer melting assay and polymerase chain reaction stop assay. Those experimental results indicated that the two complexes can effectively stabilize the G-quadruplex of Pu39. It was found that the complex 2 exhibited greater cytotoxic activity than 1 against human Hela cells and can enter into Hela cells in a short period of time to effectively induce apoptosis of cells. Further experiments found that complexes 1 and 2 had as potent inhibitory effects on ECV-304 cell migration as suramin. Those noteworthy results provide new insights into the development of anticancer agents for targeting G-quadruplex DNA.


Journal of Inorganic Biochemistry | 2014

A ruthenium(II) complex capable of inducing and stabilizing bcl-2 G-quadruplex formation as a potential cancer inhibitor

Jingnan Zhang; Qianqian Yu; Qian Li; Licong Yang; Lanmei Chen; Yanhui Zhou; Jie Liu

Two ruthenium(II) complexes (Ru-complexes) were synthesized and characterized in this study. The selectivity and ability of the complexes to interact with bcl-2 DNA were investigated here. It turned out that [Ru(ip)3](ClO4)2·2H2O (complex 1, ip = 1H-iminazole [4,5-f][1,10] phenanthroline) could induce and stabilize the formations of G-quadruplexes more effectively than [Ru(pip)3](ClO4)2·2H2O (complex 2, pip = 2-phenylimidazo-[4,5-f][1,10]phenanthroline) did. Considering the important role of the Ru-complex ligand in inducing and stabilizing the formations of G-quadruplex in our previous studies, we speculate that the overlarge ligand of complex 2 may block its binding affinity for G-quadruplexes. Complex 1 also induced cell apoptosis in in vitro assays. In general, this study provided potentially important information for further development of the Ru-complexes as good inducers and stabilizers of bcl-2 G-quadruplex DNA for cancer treatment.


ACS Applied Materials & Interfaces | 2016

Penetratin Peptide-Functionalized Gold Nanostars: Enhanced BBB Permeability and NIR Photothermal Treatment of Alzheimer’s Disease Using Ultralow Irradiance

Tiantian Yin; Wenjie Xie; Jing Sun; Licong Yang; Jie Liu

The structural changes of amyloid-beta (Aβ) from nontoxic monomers into neurotoxic aggregates are implicated with pathogenesis of Alzheimers disease (AD). Over the past decades, weak disaggregation ability and low permeability to the blood-brain barrier (BBB) may be the main obstacles for major Aβ aggregation blockers. Here, we synthesized penetratin (Pen) peptide loaded poly(ethylene glycol) (PEG)-stabilized gold nanostars (AuNS) modified with ruthenium complex (Ru@Pen@PEG-AuNS), and Ru(II) complex as luminescent probes for tracking drug delivery. We revealed that Ru@Pen@PEG-AuNS could obviously inhibit the formation of Aβ fibrils as well as dissociate preformed fibrous Aβ under the irradiation of near-infrared (NIR) due to the NIR absorption characteristic of AuNS. More importantly, this novel design could be applied in medicine as an appropriate nanovehicle, being highly biocompatible and hemocompatible. In addition, Ru@Pen@PEG-AuNS had excellent neuroprotective effect on the Aβ-induced cellular toxicity by applying NIR irradiation. Meanwhile, Pen peptide could effectively improve the delivery of nanoparticles to the brain in vitro and in vivo, which overcame the major limitation of Aβ aggregation blockers. These consequences illustrated that the enhanced BBB permeability and efficient photothermolysis of Ru@Pen@PEG-AuNS are promising agents in AD therapy.


Acta Biomaterialia | 2016

Gold nanoparticle-capped mesoporous silica-based H2O2-responsive controlled release system for Alzheimer's disease treatment.

Licong Yang; Tiantian Yin; Yanan Liu; Jing Sun; Yanhui Zhou; Jie Liu

Metal ions promote Alzheimers disease (AD) pathogenesis by accelerating amyloid-β (Aβ) aggregation and inducing formation of neurotoxic reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). Although metal chelators can block these effects, their therapeutic potential is marred by their inability to cross the blood-brain barrier (BBB) and by their non-specific interactions with metal ions necessary for normal cellular processes, which could result in adverse side effects. To overcome these limitations, we created a novel gold nanoparticle-capped mesoporous silica (MSN-AuNPs) based H2O2-responsive controlled release system for targeted delivery of the metal chelator CQ. In this system, CQ is released only upon exposure to conditions in which H2O2 levels are high, such as those in Aβ plaques. The conjugation of AuNPs on the surface of MSN did not affect their ability to cross the BBB. The AuNPs also help in decrease the Aβ self-assembly, due to this, MSN-CQ-AuNPs were more efficient than MSN-CQ in inhibiting Cu2+-induced Aβ40 aggregation. Furthermore, MSN-CQ-AuNPs reduced the cell membrane disruption, microtubular defects and ROS-mediated apoptosis induced by Aβ40-Cu2+ complexes. The high BBB permeability, efficient anti-Aβ aggregation, and good biocompatibility of MSN-CQ-AuNPs, together with the specific conditions necessary for its release of CQ, demonstrate its potential for future biomedical applications. STATEMENT OF SIGNIFICANCE Due to the low ability to cross the blood-brain barrier (BBB) and non-specific interactions with metal ions necessary for normal cellular processes of metal chelator or Aβ inhibitors, we created a novel gold nanoparticle-capped mesoporous silica (MSN-AuNPs)-based H2O2-responsive controlled release system for targeted delivery of the metal chelator CQ and AuNPs (Aβ inhibitor). In this system, CQ and AuNPs are released only upon exposure to conditions in which H2O2 levels are high, such as those in Aβ plaques. The AuNPs on the surface of MSN also help in decrease the Aβ self-assembly, due to this, MSN-CQ-AuNPs were more efficient than MSN-CQ in inhibiting Cu2+-induced Aβ40 aggregation. Furthermore, MSN-CQ-AuNPs reduced the cell membrane disruption, microtubular defects and ROS-mediated apoptosis induced by Aβ40-Cu2+ complexes. Our data suggest that this controlled release system may have widespread application in the field of medicine for Alzheimers disease.


Science and Technology of Advanced Materials | 2014

Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis.

Wenjing Zheng; Licong Yang; Ying Liu; Xiuying Qin; Yanhui Zhou; Yunshan Zhou; Jie Liu

Abstract Tumor growth depends on angiogenesis, which can furnish the oxygen and nutrients that proliferate tumor cells. Thus, blocking angiogenesis can be an effective strategy to inhibit tumor growth. In this work, three typical nanoparticles based on polyoxometalates (POMs) have been prepared; we investigated their capability as antitumor and anti-angiogenesis agents. We found that Mo POM nanoparticles, especially complex 3, inhibited the growth of human hepatocellular liver carcinoma cells (HepG2) through cellular reactive oxygen species levels’ elevation and mitochondrial membrane potential damage. Complex 3 also suppressed the proliferation, migration, and tube formation of endothelial cells in vitro and chicken chorioallantoic membrane development ex vivo. Furthermore, western blot analysis of cell signaling molecules indicated that Mo POMs blocked the vascular endothelial growth factor receptor 2-mediated ERK1/2 and AKT signaling pathways in endothelial cells. Using transmission electron microscopy, we demonstrated their cellular uptake and localization within the cytoplasm of HepG2 cells. These results indicate that, owing to the extraordinary physical and chemical properties, Mo POM nanoparticles can significantly inhibit tumor growth and angiogenesis, which makes them potential drug candidates in anticancer and anti-angiogenesis therapies.

Collaboration


Dive into the Licong Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge