Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lidia Alonso-Nanclares is active.

Publication


Featured researches published by Lidia Alonso-Nanclares.


Nature Reviews Neuroscience | 2008

Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex.

Giorgio A. Ascoli; Lidia Alonso-Nanclares; Stewart A. Anderson; German Barrionuevo; Ruth Benavides-Piccione; Andreas Burkhalter; György Buzsáki; Bruno Cauli; Javier DeFelipe; Alfonso Fairén; Dirk Feldmeyer; Gord Fishell; Yves Frégnac; Tamás F. Freund; Daniel Gardner; Esther P. Gardner; Jesse H. Goldberg; Moritz Helmstaedter; Shaul Hestrin; Fuyuki Karube; Zoltán F. Kisvárday; Bertrand Lambolez; David A. Lewis; Oscar Marín; Henry Markram; Alberto Muñoz; Adam M. Packer; Carl C. H. Petersen; Kathleen S. Rockland; Jean Rossier

Neuroscience produces a vast amount of data from an enormous diversity of neurons. A neuronal classification system is essential to organize such data and the knowledge that is derived from them. Classification depends on the unequivocal identification of the features that distinguish one type of neuron from another. The problems inherent in this are particularly acute when studying cortical interneurons. To tackle this, we convened a representative group of researchers to agree on a set of terms to describe the anatomical, physiological and molecular features of GABAergic interneurons of the cerebral cortex. The resulting terminology might provide a stepping stone towards a future classification of these complex and heterogeneous cells. Consistent adoption will be important for the success of such an initiative, and we also encourage the active involvement of the broader scientific community in the dynamic evolution of this project.


Journal of Neurocytology | 2002

Microstructure of the neocortex: Comparative aspects

Javier DeFelipe; Lidia Alonso-Nanclares; Jon I. Arellano

The appearance of the neocortex, its expansion, and its differentiation in mammals, represents one of the principal episodes in the evolution of the vertebrate brain. One of the fundamental questions in neuroscience is what is special about the neocortex of humans and how does it differ from that of other species? It is clear that distinct cortical areas show important differences within both the same and different species, and this has led to some researchers emphasizing the similarities whereas others focus on the differences. In general, despite of the large number of different elements that contribute to neocortical circuits, it is thought that neocortical neurons are organized into multiple, small repeating microcircuits, based around pyramidal cells and their input-output connections. These inputs originate from extrinsic afferent systems, excitatory glutamatergic spiny cells (which include other pyramidal cells and spiny stellate cells), and inhibitory GABAergic interneurons. The problem is that the neuronal elements that make up the basic microcircuit are differentiated into subtypes, some of which are lacking or highly modified in different cortical areas or species. Furthermore, the number of neurons contained in a discrete vertical cylinder of cortical tissue varies across species. Additionally, it has been shown that the neuropil in different cortical areas of the human, rat and mouse has a characteristic layer specific synaptology. These variations most likely reflect functional differences in the specific cortical circuits. The laminar specific similarities between cortical areas and between species, with respect to the percentage, length and density of excitatory and inhibitory synapses, and to the number of synapses per neuron, might be considered as the basic cortical building bricks. In turn, the differences probably indicate the evolutionary adaptation of excitatory and inhibitory circuits to particular functions.


Cell | 2015

Reconstruction and Simulation of Neocortical Microcircuitry

Henry Markram; Eilif Muller; Srikanth Ramaswamy; Michael W. Reimann; Marwan Abdellah; Carlos Aguado Sanchez; Anastasia Ailamaki; Lidia Alonso-Nanclares; Nicolas Antille; Selim Arsever; Guy Antoine Atenekeng Kahou; Thomas K. Berger; Ahmet Bilgili; Nenad Buncic; Athanassia Chalimourda; Giuseppe Chindemi; Jean Denis Courcol; Fabien Delalondre; Vincent Delattre; Shaul Druckmann; Raphael Dumusc; James Dynes; Stefan Eilemann; Eyal Gal; Michael Emiel Gevaert; Jean Pierre Ghobril; Albert Gidon; Joe W. Graham; Anirudh Gupta; Valentin Haenel

UNLABELLED We present a first-draft digital reconstruction of the microcircuitry of somatosensory cortex of juvenile rat. The reconstruction uses cellular and synaptic organizing principles to algorithmically reconstruct detailed anatomy and physiology from sparse experimental data. An objective anatomical method defines a neocortical volume of 0.29 ± 0.01 mm(3) containing ~31,000 neurons, and patch-clamp studies identify 55 layer-specific morphological and 207 morpho-electrical neuron subtypes. When digitally reconstructed neurons are positioned in the volume and synapse formation is restricted to biological bouton densities and numbers of synapses per connection, their overlapping arbors form ~8 million connections with ~37 million synapses. Simulations reproduce an array of in vitro and in vivo experiments without parameter tuning. Additionally, we find a spectrum of network states with a sharp transition from synchronous to asynchronous activity, modulated by physiological mechanisms. The spectrum of network states, dynamically reconfigured around this transition, supports diverse information processing strategies. PAPERCLIP VIDEO ABSTRACT.


Frontiers in Neuroanatomy | 2009

Counting synapses using FIB/SEM microscopy: a true revolution for ultrastructural volume reconstruction

Angel Merchán-Pérez; José-Rodrigo Rodríguez; Lidia Alonso-Nanclares; Andreas Schertel; Javier DeFelipe

The advent of transmission electron microscopy (TEM) in the 1950s represented a fundamental step in the study of neuronal circuits. The application of this technique soon led to the realization that the number of synapses changes during the course of normal life, as well as under certain pathological or experimental circumstances. Since then, one of the main goals in neurosciences has been to define simple and accurate methods to estimate the magnitude of these changes. Contrary to analysing single sections, TEM reconstructions are extremely time-consuming and difficult. Therefore, most quantitative studies use stereological methods to define the three-dimensional characteristics of synaptic junctions that are studied in two dimensions. Here, to count the exact number of synapses per unit of volume we have applied a new three-dimensional reconstruction method that involves the combination of focused ion beam milling and scanning electron microscopy (FIB/SEM). We show that the images obtained with FIB/SEM are similar to those obtained with TEM, but with the advantage that FIB/SEM permits serial reconstructions of large volumes of tissue to be generated rapidly and automatically. Furthermore, we compared the estimates of the number of synapses obtained with stereological methods with the values obtained by FIB/SEM reconstructions. We concluded that FIB/SEM not only provides the actual number of synapses per volume but it is also much easier and faster to use than other currently available TEM methods. More importantly, it also avoids most of the errors introduced by stereological methods and overcomes the difficulties associated with these techniques.


Cerebral Cortex | 2009

Widespread Changes in Dendritic Spines in a Model of Alzheimer's Disease

Shira Knafo; Lidia Alonso-Nanclares; Juncal González-Soriano; Paula Merino-Serrais; Isabel Fernaud-Espinosa; Isidre Ferrer; Javier DeFelipe

The mechanism by which dementia occurs in patients with Alzheimers disease (AD) is not known. We assessed changes in hippocampal dendritic spines of APP/PS1 transgenic mice that accumulate amyloid beta throughout the brain. Three-dimensional analysis of 21,507 dendritic spines in the dentate gyrus, a region crucial for learning and memory, revealed a substantial decrease in the frequency of large spines in plaque-free regions of APP/PS1 mice. Plaque-related dendrites also show striking alterations in spine density and morphology. However, plaques occupy only 3.9% of the molecular layer volume. Because large spines are considered to be the physical traces of long-term memory, widespread decrease in the frequency of large spines likely contributes to the cognitive impairments observed in this AD model.


Neuroscience | 2007

Quantitative analysis of parvalbumin-immunoreactive cells in the human epileptic hippocampus

A. Andrioli; Lidia Alonso-Nanclares; Jon I. Arellano; Javier DeFelipe

Hippocampal sclerosis is the most frequent pathology encountered in mesial temporal structures resected from patients with intractable temporal lobe epilepsy and it mainly involves hippocampal neuronal loss and gliosis. These alterations are accompanied by changes in the expression of a variety of molecules in the surviving neurons, as well as axonal reorganization in both excitatory and inhibitory circuits. The alteration of a subpopulation of GABAergic interneurons that expresses the calcium binding protein parvalbumin (PV) is thought to be a key factor in the epileptogenic process. We investigated the distribution and density of parvalbumin-immunoreactive (PV-ir) neurons in surgically resected hippocampal tissue from epileptic patients with and without sclerosis. Using quantitative stereological methods, we show for the first time that there is no correlation between total neuronal loss and PV-ir neuronal loss in any of the hippocampal fields. We also observed higher values of the total neuronal density in the sclerotic subiculum, which is accompanied by a lower density of PV-ir when compared with non-sclerotic epileptic and autopsy hippocampi. These findings suggest that, the apparently normal subiculum from sclerotic patients also shows unexpected changes in the density and proportion of PV-ir neurons.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Gender differences in human cortical synaptic density

Lidia Alonso-Nanclares; Juncal González-Soriano; José-Rodrigo Rodríguez; Javier DeFelipe

Certain cognitive functions differ in men and women, although the anatomical and functional substrates underlying these differences remain unknown. Because neocortical activity is directly related with higher brain function, numerous studies have focused on the cerebral cortex when searching for possible structural correlates of cognitive gender differences. However, there are no studies on possible gender differences at the synaptic level. In the present work we have used stereological and correlative light and electron microscopy to show that men have a significantly higher synaptic density than women in all cortical layers of the temporal neocortex. These differences may represent a microanatomical substrate contributing to the functional gender differences in brain activity.


Neuroscience | 2003

Postnatal development of the vesicular GABA transporter in rat cerebral cortex.

A Minelli; Lidia Alonso-Nanclares; Robert H. Edwards; Javier DeFelipe; Fiorenzo Conti

Light and electron microscopic immunocytochemical techniques and Western blotting were used to investigate the postnatal development of the vesicular GABA transporter (VGAT) in the rat somatic sensory cortex. VGAT immunoreactivity was low at birth, it increased gradually through the first and second weeks of life and achieved the adult pattern during the third week. At postnatal day (P)0-P5, VGAT immunoreactivity was associated exclusively to fibers and puncta. Electron microscopic studies performed at P5 showed that all identified synaptic contacts formed by VGAT-positive axonal swellings were of the symmetric type and that a substantial proportion of the boutons appeared not to have formed synapses. From P10 onward, labeled puncta were both scattered in the neuropil and in apposition to unstained cellular profiles; VGAT was also expressed in few GABAergic cell bodies. Western blottings at the same postnatal ages revealed a 55-kDa band whose intensity was weak at P0 (17% of adult), it increased constantly until P15 (P2: 35%; P5: 44%; P10: 68%; P15: 97%), and then leveled off. Overall, the present results show that during neocortical development the expression of VGAT slightly precedes the complete maturation of inhibitory synaptogenesis and suggest that it may contribute to the formation of neocortical GABAergic circuitry.


Frontiers in Neuroanatomy | 2011

Espina: A Tool for the Automated Segmentation and Counting of Synapses in Large Stacks of Electron Microscopy Images

Juan Morales; Lidia Alonso-Nanclares; José-Rodrigo Rodríguez; Javier DeFelipe; Angel Rodríguez; Angel Merchán-Pérez

The synapses in the cerebral cortex can be classified into two main types, Grays type I and type II, which correspond to asymmetric (mostly glutamatergic excitatory) and symmetric (inhibitory GABAergic) synapses, respectively. Hence, the quantification and identification of their different types and the proportions in which they are found, is extraordinarily important in terms of brain function. The ideal approach to calculate the number of synapses per unit volume is to analyze 3D samples reconstructed from serial sections. However, obtaining serial sections by transmission electron microscopy is an extremely time consuming and technically demanding task. Using focused ion beam/scanning electron microscope microscopy, we recently showed that virtually all synapses can be accurately identified as asymmetric or symmetric synapses when they are visualized, reconstructed, and quantified from large 3D tissue samples obtained in an automated manner. Nevertheless, the analysis, segmentation, and quantification of synapses is still a labor intensive procedure. Thus, novel solutions are currently necessary to deal with the large volume of data that is being generated by automated 3D electron microscopy. Accordingly, we have developed ESPINA, a software tool that performs the automated segmentation and counting of synapses in a reconstructed 3D volume of the cerebral cortex, and that greatly facilitates and accelerates these processes.


PLOS Biology | 2012

Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement

Shira Knafo; César Venero; Cristina Sánchez-Puelles; Inmaculada Pereda-Pérez; Ana Franco; Carmen Sandi; Luz M. Suárez; José M. Solís; Lidia Alonso-Nanclares; Eduardo D. Martín; Paula Merino-Serrais; Erika Borcel; Shizhong Li; Yongshuo Chen; Juncal González-Soriano; Vladimir Berezin; Elisabeth Bock; Javier DeFelipe; José A. Esteban

A small peptide from a neuronal cell adhesion molecule enhances synaptic plasticity in the hippocampus and results in improved cognitive performance in rats.

Collaboration


Dive into the Lidia Alonso-Nanclares's collaboration.

Top Co-Authors

Avatar

Javier DeFelipe

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angel Merchán-Pérez

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Juncal González-Soriano

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Paula Merino-Serrais

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alberto Muñoz

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Jon I. Arellano

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Rafael G. Sola

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Shira Knafo

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Angel Rodríguez

Technical University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge