Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lidia Cova is active.

Publication


Featured researches published by Lidia Cova.


Experimental Neurology | 1999

Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation

Angelo L. Vescovi; Eugenio Parati; Angela Gritti; Paule Poulin; Marina Ferrario; Enzo Wanke; Paola Frölichsthal-Schoeller; Lidia Cova; Mayi Arcellana-Panlilio; Augusto Colombo; Rossella Galli

Stem cells that can give rise to neurons, astroglia, and oligodendroglia have been found in the developing and adult central nervous system (CNS) of rodents. Yet, their existence within the human brain has not been documented, and the isolation and characterization of multipotent embryonic human neural stem cells have proven difficult to accomplish. We show that the developing human CNS embodies multipotent precursors that differ from their murine counterpart in that they require simultaneous, synergistic stimulation by both epidermal and fibroblast growth factor-2 to exhibit critical stem cell characteristics. Clonal analysis demonstrates that human C NS stem cells are multipotent and differentiate spontaneously into neurons, astrocytes, and oligodendrocytes when growth factors are removed. Subcloning and population analysis show their extensive self-renewal capacity and functional stability, their ability to maintain a steady growth profile, their multipotency, and a constant potential for neuronal differentiation for more than 2 years. The neurons generated by human stem cells over this period of time are electrophysiologically active. These cells are also cryopreservable. Finally, we demonstrate that the neuronal and glial progeny of long-term cultured human CNS stem cells can effectively survive transplantation into the lesioned striatum of adult rats. Tumor formation is not observed, even in immunodeficient hosts. Hence, as a consequence of their inherent biology, human CNS stem cells can establish stable, transplantable cell lines by epigenetic stimulation. These lines represent a renewable source of neurons and glia and may significantly facilitate research on human neurogenesis and the development of clinical neural transplantation.


Stem Cells | 2000

Isolation and Characterization of Neural Stem Cells from the Adult Human Olfactory Bulb

Stefano F. Pagano; Francesco Impagnatiello; Marina Girelli; Lidia Cova; Elisabetta Grioni; Marco Onofri; Maurizio Cavallaro; Sabrina Etteri; Francesco Vitello; Sergio Giombini; Carlo L. Solero; Eugenio A. Parati

We have recently isolated stem cells deriving from the olfactory bulbs of adult patients undergoing particularly invasive neurosurgery. After improving our experimental conditions, we have now obtained neural stem cells according to clonal analysis. The cells can be expanded, established in continuous cell lines and differentiated into the three classical neuronal phenotypes (neurons, astrocytes, and oligodendrocytes). Also, after exposition to leukemia inhibitory factor, we are able to improve the number of neurons, an ideal biological source for transplantation in various neurodegenerative disorders.


Experimental Neurology | 2005

Neuro-glial differentiation of human bone marrow stem cells in vitro

Patrizia Bossolasco; Lidia Cova; Cinzia Calzarossa; S.G. Rimoldi; C. Borsotti; G. Lambertenghi Deliliers; Vincenzo Silani; Davide Soligo; Elio Polli

Bone marrow (BM) is a rich source of stem cells and may represent a valid alternative to neural or embryonic cells in replacing autologous damaged tissues for neurodegenerative diseases. The purpose of the present study is to identify human adult BM progenitor cells capable of neuro-glial differentiation and to develop effective protocols of trans-differentiation to surmount the hematopoietic commitment in vitro. Heterogeneous cell populations such as whole BM, low-density mononuclear and mesenchymal stem (MSCs), and several immunomagnetically separated cell populations were investigated. Among them, MSCs and CD90+ cells were demonstrated to express neuro-glial transcripts before any treatment. Several culture conditions with the addition of stem cell or astroblast conditioned media, different concentrations of serum, growth factors, and supplements, used alone or in combinations, were demonstrated to alter the cellular morphology in some cell subpopulations. In particular, MSCs and CD90+ cells acquired astrocytic and neuron-like morphologies in specific culture conditions. They expressed several neuro-glial specific markers by RT-PCR and glial fibrillary acid protein by immunocytochemistry after co-culture with astroblasts, both in the absence or presence of cell contact. In addition, floating neurosphere-like clones have been observed when CD90+ cells were grown in neural specific media. In conclusion, among the large variety of human adult BM cell populations analyzed, we demonstrated the in vitro neuro-glial potential of both the MSC and CD90+ subset of cells. Moreover, unidentified soluble factors provided by the conditioned media and cellular contacts in co-culture systems were effective in inducing the neuro-glial phenotype, further supporting the adult BM neural differentiative capability.


Cell Research | 2006

Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential.

Patrizia Bossolasco; Tiziana Montemurro; Lidia Cova; Stefano Zangrossi; Cinzia Calzarossa; Simona Buiatiotis; Davide Soligo; Silvano Bosari; Vincenzo Silani; Giorgio Lambertenghi Deliliers; Paolo Rebulla; Lorenza Lazzari

The main goal of the study was to identify a novel source of human multipotent cells, overcoming ethical issues involved in embryonic stem cell research and the limited availability of most adult stem cells. Amniotic fluid cells (AFCs) are routinely obtained for prenatal diagnosis and can be expanded in vitro; nevertheless current knowledge about their origin and properties is limited. Twenty samples of AFCs were exposed in culture to adipogenic, osteogenic, neurogenic and myogenic media. Differentiation was evaluated using immunocytochemistry, RT-PCR and Western blotting. Before treatments, AFCs showed heterogeneous morphologies. They were negative for MyoD, Myf-5, MRF4, Myogenin and Desmin but positive for osteocalcin, PPARgamma2, GAP43, NSE, Nestin, MAP2, GFAP and beta tubulin III by RT-PCR. The cells expressed Oct-4, Rex-1 and Runx-1, which characterize the undifferentiated stem cell state. By immunocytochemistry they expressed neural-glial proteins, mesenchymal and epithelial markers. After culture, AFCs differentiated into adipocytes and osteoblasts when the predominant cellular component was fibroblastic. Early and late neuronal antigens were still present after 2 week culture in neural specific media even if no neuronal morphologies were detectable. Our results provide evidence that human amniotic fluid contains progenitor cells with multi-lineage potential showing stem and tissue-specific gene/protein presence for several lineages.


Neuroscience Letters | 1995

Basic fibroblast growth factor supports the proliferation of epidermal growth factor-generated neuronal precursor cells of the adult mouse CNS.

Angela Gritti; Lidia Cova; Eugenio Parati; Rossella Galli; Angelo L. Vescovi

Stem cells isolated from the CNS of both embryonic and adult mice undergo extensive proliferation in the presence of epidermal growth factor (EGF). Removal of EGF determines the differentiation of these cells into neurons and glia. We have recently demonstrated that basic fibroblast growth factor (bFGF) regulates the proliferation of EGF-generated progenitors of the embryonic mouse striatum. We report here that bFGF induces proliferation of some EGF-generated precursors of the adult mouse striatum which, in turn, differentiate in vitro into cells possessing neuron-like morphology and neuronal antigenic properties. These results demonstrate that EGF and bFGF can act sequentially to regulate the de novo generation of neurons from the adult mouse CNS in vitro and suggest the existence of a lineage relationship between EGF- and bFGF-responsive progenitor cells of the adult murine brain.


The Lancet | 2004

Stem-cell therapy for amyotrophic lateral sclerosis

Vincenzo Silani; Lidia Cova; Massimo Corbo; Andrea Ciammola; Elio Polli

CONTEXT With the lack of effective drug treatments for amyotrophic lateral sclerosis (ALS), and compelling preclinical data, stem-cell research has highlighted this disease as a candidate for stem-cell treatment. Stem-cell transplantation is an attractive strategy for neurological diseases and early successes in animal models of neurodegnerative disease generated optimism about restoring function or delaying degeneration in human beings. The restricted potential of adult stem cells has been challenged over the past 5 years by reports on their ability to acquire new unexpected fates beyond their embryonic lineage (transdifferentiation). Therefore, autologous or allogeneic stem cells, undifferentiated or transdifferentiated and manipulated epigenetically or genetically, could be a candidate source for local or systemic cell-therapies in ALS. STARTING POINT Albert Clement and colleagues (Science 2003; 302: 113-17) showed that in SOD1G93A chimeric mice, motorneuron degeneration requires damage from mutant SOD1 acting in non-neuronal cells. Wild-type non-neuronal (glial) cells could delay degeneration and extend survival of mutant-expressing motorneurons. Letizia Mazzini and colleagues (Amyotroph Lateral Scler Other Motor Neuron Disord 2003; 4: 158-61) injected autologous bone-marrow-derived stem cells into the spinal cord of seven ALS patients. These investigators reported that the procedure had a reasonable margin of clinical safety. WHERE NEXT? The success of cell-replacement therapy in ALS will depend a lot on preclinical evidence, because of the complexity and precision of the pattern of connectivity that needs to be restored in degenerating motoneurons. Stem-cell therapy will need to be used with other drugs or treatments, such as antioxidants and/or infusion of trophic molecules.


Cell Transplantation | 2010

Transplantation of undifferentiated human mesenchymal stem cells protects against 6-hydroxydopamine neurotoxicity in the rat.

Fabio Blandini; Lidia Cova; Marie Therese Armentero; Eleonora Zennaro; Giovanna Levandis; Patrizia Bossolasco; Cinzia Calzarossa; Manuela Mellone; Busca Giuseppe; Giorgio Lambertenghi Deliliers; Elio Polli; Giuseppe Nappi; Vincenzo Silani

Stem cells have been increasingly recognized as a potential tool to replace or support cells damaged by the neurodegenerative process that underlies Parkinsons disease (PD). In this frame, human adult mesenchymal stem cells (hMSCs) have been proposed as an attractive alternative to heterologous embryonic or neural precursor cells. To address this issue, in this study we implanted undifferentiated hMSCs into the striatum of rats bearing a lesion of the nigrostriatal pathway induced by local injection of 6-hydroxydopamine (6-OHDA), a widely recognized rodent model of PD. Before grafting, cultured hMSCs expressed markers of both undifferentiated and committed neural cells, including nestin, GAP-43, NSE, β-tubulin III, and MAP-2, as well as several cytokine mRNAs. No glial or specific neuronal markers were detected. Following transplantation, some hMSCs acquired a glial-like phenotype, as shown by immunoreactivity for glial fibrillary acid protein (GFAP), but only in animals bearing the nigrostriatal lesion. More importantly, rats that received the striatal graft showed increased survival of both cell bodies and terminals of dopaminergic, nigrostriatal neurons, coupled with a reduction of the behavioral abnormalities (apomorphine-induced turning behavior) associated with the lesion. No differentiation of the MSCs toward a neuronal (dopaminergic) phenotype was observed in vivo. In conclusion, our results suggest that grafted hMSCs exert neuroprotective effects against nigrostriatal degeneration induced by 6-OHDA. The mechanisms underlying this effect remain to be clarified, although it is likely that the acquisition of a glial phenotype by grafted hMSCs may lead to the release of prosurvival cytokines within the lesioned striatum.


Brain Research | 2010

Multiple neurogenic and neurorescue effects of human mesenchymal stem cell after transplantation in an experimental model of Parkinson's disease

Lidia Cova; Marie Therese Armentero; Eleonora Zennaro; Cinzia Calzarossa; Patrizia Bossolasco; Giuseppe Busca; Giorgio Lambertenghi Deliliers; Elio Polli; Giuseppe Nappi; Vincenzo Silani; Fabio Blandini

Stimulation of endogenous repair in neurodegenerative diseases, such as Parkinsons disease (PD), appears to be a novel and promising therapeutic application of stem cells (SCs). In fact SCs could propel local microenvironmental signals to sustain active endeavors for damaged neurons substitution, normally failing in non-supportive pathological surroundings. In this study, we demonstrated that two different doses of naïve human adult mesenchymal stem cells (hMSCs), implanted in the striatum of rats lesioned with 6-hydroxydopamine (6-OHDA), positively survived 23 days after transplantation. Their fate was directly influenced by the surrounding host environment while grafted hMSCs, dose dependently, regionally sustained the survival of striatal/nigral dopaminergic terminals and enhanced neurogenesis in the Subventricular Zone (SVZ). The number of proliferative cells (Ki67/Proliferating Cell Nuclear Antigen +) as well as neuroblasts migration significantly augmented in the lesioned striatum of transplanted animals compared to controls. No SVZ astrogenesis was detected in all experimental conditions, irrespectively of graft presence. Activation of endogenous stem cell compartments and rescue of dopaminergic neurons, supported by the persistent release of specific cytokine by MSCs in vivo, appeared in principle able to contrast the neurodegenerative processes induced by the 6-OHDA lesion. Our results suggest that reciprocal influences between grafted cells and endogenous neural precursors could be important for the observed neurorescue effect on several brain regions. Altogether, our data provide remarkable cues regarding the potential of hMSCs in promoting endogenous reparative mechanisms that may prove applicable and beneficial for PD treatment.


Cell Transplantation | 2007

Induction of neurotrophin expression via human adult mesenchymal stem cells: implication for cell therapy in neurodegenerative diseases.

Federica Pisati; Patrizia Bossolasco; Mirella Meregalli; Lidia Cova; Marzia Belicchi; Manuela Gavina; C. Marchesi; Cinzia Calzarossa; Davide Soligo; Giorgio Lambertenghi-Deliliers; Nereo Bresolin; Vincenzo Silani; Yvan Torrente; Elio Polli

In animal models of neurological disorders for cerebral ischemia, Parkinsons disease, and spinal cord lesions, transplantation of mesenchymal stem cells (MSCs) has been reported to improve functional outcome. Three mechanisms have been suggested for the effects of the MSCs: transdifferentiation of the grafted cells with replacement of degenerating neural cells, cell fusion, and neuroprotection of the dying cells. Here we demonstrate that a restricted number of cells with differentiated astroglial features can be obtained from human adult MSCs (hMSCs) both in vitro using different induction protocols and in vivo after transplantation into the developing mouse brain. We then examined the in vitro differentiation capacity of the hMSCs in coculture with slices of neonatal brain cortex. In this condition the hMSCs did not show any neuronal transdifferentiation but expressed neurotrophin low-affinity (NGFRp75) and high-affinity (trkC) receptors and released nerve growth factor (NGF) and neurotrophin-3 (NT-3). The same neurotrophins expression was demonstrated 45 days after the intracerebral transplantation of hMSCs into nude mice with surviving astroglial cells. These data further confirm the limited capability of adult hMSC to differentiate into neurons whereas they differentiated in astroglial cells. Moreover, the secretion of neurotrophic factors combined with activation of the specific receptors of transplanted hMSCs demonstrated an alternative mechanism for neuroprotection of degenerating neurons. hMSCs are further defined in their transplantation potential for treating neurological disorders.


Laboratory Investigation | 2001

Human vasculogenesis ex vivo: embryonal aorta as a tool for isolation of endothelial cell progenitors.

Giulio Alessandri; Marina Girelli; Gianluca Taccagni; Augusto Colombo; Roberto F. Nicosia; Arnaldo Caruso; Manuela Baronio; Stefano F. Pagano; Lidia Cova; Eugenio Parati

Vasculogenesis, the de novo formation of new blood vessels from undifferentiated precursor cells or angioblasts, has been studied with experimental in vivo and ex vivo animal models, but its mechanism is poorly understood, particularly in humans. We used the aortic ring assay to investigate the angioforming capacity of aortic explants from 11- to 12-week-old human embryos. After being embedded in collagen gels, the aorta rings produced branching capillary-like structures formed by mesenchymal spindle cells that lined a capillary-like lumen and expressed markers of endothelial differentiation (CD31, CD34, von Willebrand factor [vWF], and fms-like tyrosine kinase-1 [Flk-1;[sol;vascular endothelial growth factor receptor 2 [VEGFR2]). The cell linings of these structures showed ultrastructural evidence of endothelial differentiation. The neovascular proliferation occurred primarily in the outer aspects of aortic rings, thus suggesting that the new vessels mainly arose from immature endothelial precursor cells localized in the outer layer of the aortic stroma, ie, a process of vasculogenesis rather than angiogenesis. The undifferentiated mesenchymal cells (CD34+/CD31−), isolated and cultured on collagen-fibronectin, differentiated into endothelial cells expressing CD31 and vWF. Furthermore, the CD34+/CD31+ cells were capable of forming a network of capillary-like structures when cultured on Matrigel. This is the first reported study showing the ex vivo formation of human microvessels by vasculogenesis. Our findings indicate that the human embryonic aorta is a rich source of CD34+/CD31− endothelial progenitor cells (angioblasts), and this information may prove valuable in studies of vascular regeneration and tissue bioengineering.

Collaboration


Dive into the Lidia Cova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugenio Parati

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valentina Diana

Mario Negri Institute for Pharmacological Research

View shared research outputs
Top Co-Authors

Avatar

Angelo L. Vescovi

Casa Sollievo della Sofferenza

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge