Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lidia Tihaa is active.

Publication


Featured researches published by Lidia Tihaa.


Journal of Biological Chemistry | 2007

Endoglin Differentially Modulates Antagonistic Transforming Growth Factor-β1 and BMP-7 Signaling

Olaf Scherner; Steffen K. Meurer; Lidia Tihaa; Axel M. Gressner; Ralf Weiskirchen

Transforming growth factor-β1 (TGF-β1) and BMP-7 (bone morphogenetic protein-7; OP-1) play central, antagonistic roles in kidney fibrosis, a setting in which the expression of endoglin (CD105), an accessory TGF-β type III receptor, is increased. So far, endoglin is known as a negative regulator of TGF-β/ALK-5 signaling. Here we analyzed the effect of BMP-7 on TGF-β1 signaling and the role of endoglin for both pathways in endoglin-deficient L6E9 cells. In this myoblastic cell line, TGF-β1 and BMPs are opposing cytokines, interfering with myogenic differentiation. Both induce specific target genes of which Id1 (for BMPs) and collagen I (for TGF-β1) are two examples. TGF-β1 activated two distinct type I receptors, ALK-5 and ALK-1, in these cells. Although the ALK-5/Smad3 signaling pathway mediated collagen I expression, ALK-1/Smad1/Smad5 signaling mediated a transient Id1 up-regulation. In contrast, BMP-7 exclusively activated Smad1/Smad5 resulting in a more prolonged Id1 expression. Although BMP-7 had no impact on collagen I abundance, it antagonized TGF-β1-induced collagen I expression and (CAGA)12-MLP-Luc activity, effects that are mediated by the ALK-5/Smad3 pathway. Finally, we found that the transient overexpression of endoglin, previously shown to inhibit TGF-β1-induced ALK-5/Smad3 signaling, enhanced the BMP-7/Smad1/Smad5 pathway.


Biochimica et Biophysica Acta | 2014

The anti-fibrotic effects of CCN1/CYR61 in primary portal myofibroblasts are mediated through induction of reactive oxygen species resulting in cellular senescence, apoptosis and attenuated TGF-β signaling.

Erawan Borkham-Kamphorst; Christian Schaffrath; Eddy Van de Leur; U Haas; Lidia Tihaa; Steffen K. Meurer; Yulia A. Nevzorova; Christian Liedtke; Ralf Weiskirchen

UNLABELLED Cysteine-rich protein 61 (CCN1/CYR61) is a CCN (CYR61, CTGF (connective tissue growth factor), and NOV (Nephroblastoma overexpressed gene)) family matricellular protein comprising six secreted CCN proteins in mammals. CCN1/CYR61 expression is associated with inflammation and injury repair. Recent studies show that CCN1/CYR61 limits fibrosis in models of cutaneous wound healing by inducing cellular senescence in myofibroblasts of the granulation tissue which thereby transforms into an extracellular matrix-degrading phenotype. We here investigate CCN1/CYR61 expression in primary profibrogenic liver cells (i.e., hepatic stellate cells and periportal myofibroblasts) and found an increase of CCN1/CYR61 expression during early activation of hepatic stellate cells that declines in fully transdifferentiated myofibroblasts. By contrast, CCN1/CYR61 levels found in primary parenchymal liver cells (i.e., hepatocytes) were relatively low compared to the levels exhibited in hepatic stellate cells and portal myofibroblasts. In models of ongoing liver fibrogenesis, elevated levels of CCN1/CYR61 were particularly noticed during early periods of insult, while expression declined during prolonged phases of fibrogenesis. We generated an adenovirus type 5 encoding CCN1/CYR61 (i.e., Ad5-CMV-CCN1/CYR61) and overexpressed CCN1/CYR61 in primary portal myofibroblasts. Interestingly, overexpressed CCN1/CYR61 significantly inhibited production of collagen type I at both mRNA and protein levels as evidenced by quantitative real-time polymerase chain reaction, Western blot and immunocytochemistry. CCN1/CYR61 further induces production of reactive oxygen species (ROS) leading to dose-dependent cellular senescence and apoptosis. Additionally, we demonstrate that CCN1/CYR61 attenuates TGF-β signaling by scavenging TGF-β thereby mitigating in vivo liver fibrogenesis in a bile duct ligation model. CONCLUSION In line with dermal fibrosis and scar formation, CCN1/CYR61 is involved in liver injury repair and tissue remodeling. CCN1/CYR61 gene transfer into extracellular matrix-producing liver cells is therefore potentially beneficial in liver fibrotic therapy.


Biochimica et Biophysica Acta | 2013

Protective effects of lipocalin-2 (LCN2) in acute liver injury suggest a novel function in liver homeostasis ☆ ☆☆

Erawan Borkham-Kamphorst; Eddy Van de Leur; Henning W. Zimmermann; Karlin Raja Karlmark; Lidia Tihaa; U Haas; Frank Tacke; Thorsten Berger; Tak W. Mak; Ralf Weiskirchen

Lipocalin-2 is expressed under pernicious conditions such as intoxication, infection, inflammation and other forms of cellular stress. Experimental liver injury induces rapid and sustained LCN2 production by injured hepatocytes. However, the precise biological function of LCN2 in liver is still unknown. In this study, LCN2(-/-) mice were exposed to short term application of CCl4, lipopolysaccharide and Concanavalin A, or subjected to bile duct ligation. Subsequent injuries were assessed by liver function analysis, qRT-PCR for chemokine and cytokine expression, liver tissue Western blot, histology and TUNEL assay. Serum LCN2 levels from patients suffering from liver disease were assessed and evaluated. Acute CCl4 intoxication showed increased liver damage in LCN2(-/-) mice indicated by higher levels of aminotransferases, and increased expression of inflammatory cytokines and chemokines such as IL-1β, IL-6, TNF-α and MCP-1/CCL2, resulting in sustained activation of STAT1, STAT3 and JNK pathways. Hepatocytes of LCN2(-/-) mice showed lipid droplet accumulation and increased apoptosis. Hepatocyte apoptosis was confirmed in the Concanavalin A and lipopolysaccharide models. In chronic models (4weeks bile duct ligation or 8weeks CCl4 application), LCN2(-/-) mice showed slightly increased fibrosis compared to controls. Interestingly, serum LCN2 levels in diseased human livers were significantly higher compared to controls, but no differences were observed between cirrhotic and non-cirrhotic patients. Upregulation of LCN2 is a reliable indicator of liver damage and has significant hepato-protective effect in acute liver injury. LCN2 levels provide no correlation to the degree of liver fibrosis but show significant positive correlation to inflammation instead.


Journal of Inflammation | 2012

Expression analysis of inflammasomes in experimental models of inflammatory and fibrotic liver disease

Sorina Georgiana Boaru; Erawan Borkham-Kamphorst; Lidia Tihaa; U Haas; Ralf Weiskirchen

During inflammation, the inflammasomes representing a group of multi-protein complexes trigger the biological maturation of pro-inflammatory cytokines such as interleukin-1β and interleukin-18 by proteolytic activation of caspase-1 from its inactive proforms. The individual genes encoding components of the inflammasome machinery are regulated at transcriptional and post-transcriptional levels. Once activated, they drive a wide variety of cellular responses that are necessary to mediate host defense against microbial pathogens and to guarantee tissue homeostasis. In the present work, we have studied the expression of the different inflammasomes in various primary hepatic cell subpopulations, in models of acute inflammation and during experimental liver fibrogenesis. We demonstrate that NLRP-1, NLRP-3 and AIM2 are prominently expressed in Kupffer cells and liver sinusoidal endothelial cells, moderately expressed in periportal myofibroblasts and hepatic stellate cells, and virtually absent in primary cultured hepatocytes. We found that the challenge with the lipopolysaccharides results in a time- and concentration-dependent expression of the NOD-like receptor family members NLRP-1, NLRP-3 and NLRC4/NALP4 in cultured hepatic stellate cells and a strong transcriptional activation of NLRP-3 in hepatocytes. Moreover, we detect a diverse regulatory network of the different inflammasomes in the chosen experimental models of acute and chronic liver insult suggesting that the various inflammasomes might contribute simultaneously to the outcome of inflammatory and fibrotic liver insult, irrespectively of the underlying inflammatory stimulus.


Cellular Signalling | 2011

Expression and functional analysis of endoglin in isolated liver cells and its involvement in fibrogenic Smad signalling.

Steffen K. Meurer; Lidia Tihaa; Erawan Borkham-Kamphorst; Ralf Weiskirchen

Endoglin is an accessory component of the TGF-β-binding receptor complex that differentially modulates TGF-β and BMP responses. The existence of two splice variants L- and S-endoglin which differ in their cytoplasmic domain has already been shown in human and mice. Endoglin is located on the cell surfaces of cultured hepatic stellate cells and transdifferentiated myofibroblasts suggesting that this receptor might be associated with the profibrogenic attributes of these liver cell subpopulations. We now show that endoglin expression is increased in transdifferentiating hepatic stellate cells and in two models of liver fibrosis (i.e. bile duct ligation and carbon tetrachloride model) and further detectable in cultured portal fibroblasts representing another important fibrogenic cell type but not in hepatocytes. In respect to TGF-β1-signalling, we demonstrate that endoglin interacts with and is phosphorylated by TβRII. In hepatic stellate cells, TGF-β1 upregulates endoglin expression most likely via the ALK5 pathway and requires the SP1 transcription factor. We further identified a novel rat splice variant that is structurally and functionally different from that identified in human and mouse. Transient overexpression of endoglin resulted in a strong increase of TGF-β1-driven Smad1/5 phosphorylation and α-smooth muscle actin expression in a hepatic stellate cell line. In supernatants of respective cultures, we could detect the ectodomain of endoglin suggesting that shedding is a further key process involved in the regulation of this surface receptor.


Biochemical and Biophysical Research Communications | 2015

Platelet-derived growth factor-D modulates extracellular matrix homeostasis and remodeling through TIMP-1 induction and attenuation of MMP-2 and MMP-9 gelatinase activities.

Erawan Borkham-Kamphorst; Pascal Alexi; Lidia Tihaa; U Haas; Ralf Weiskirchen

Platelet-derived growth factor-D (PDGF-D) is a more recent recognized growth factor involved in the regulation of several cellular processes, including cell proliferation, transformation, invasion, and angiogenesis by binding to and activating its cognate receptor PDGFR-β. After bile duct ligation or in the carbon tetrachloride-induced hepatic fibrosis model, PDGF-D showed upregulation comparable to PDGF-B. Moreover, adenoviral PDGF-D gene transfer induced hepatic stellate cell proliferation and liver fibrosis. We here investigated the molecular mechanism of PDGF-D involvement in liver fibrogenesis. Therefore, the GRX mouse cell line was stimulated with PDGF-D and evaluated for fibrotic markers and PDGF-D signaling pathways in comparison to the other PDGF isoforms. We found that PDGF-D failed to enhance Col I and α-smooth muscle actin (α-SMA) production but has capacity to upregulate expression of the tissue inhibitor of metalloprotease 1 (TIMP-1) resulting in attenuation of MMP-2 and MMP-9 gelatinase activity as indicated by gelatinase zymography. This phenomenon was restored through application of a PDGF-D neutralizing antibody. Unexpectedly, PDGF-D incubation decreased both PDGFR-α and -β in mRNA and protein levels, and PDGF-D phosphorylated typrosines specific for PDGFR-α and -β. We conclude that PDGF-D intensifies fibrogenesis by interfering with the fibrolytic activity of the TIMP-1/MMP system and that PDGF-D signaling is mediated through both PDGF-α and -β receptors.


Cellular Signalling | 2016

CCN1/CYR61 overexpression in hepatic stellate cells induces ER stress-related apoptosis.

Erawan Borkham-Kamphorst; Bettina Therese Steffen; Eddy Van de Leur; U Haas; Lidia Tihaa; Scott L. Friedman; Ralf Weiskirchen

CCN1/CYR61 is a matricellular protein of the CCN family, comprising six secreted proteins specifically associated with the extracellular matrix (ECM). CCN1 acts as an enhancer of the cutaneous wound healing process by preventing hypertrophic scar formation through induction of myofibroblast senescence. In liver fibrosis, the senescent cells are primarily derived from activated hepatic stellate cells (HSC) that initially proliferate in response to liver damage and are the major source of ECM. We investigate here the possible use of CCN1 as a senescence inducer to attenuate liver fibrogenesis by means of adenoviral gene transfer in primary HSC, myofibroblasts (MFB) and immortalized HSC lines (i.e. LX-2, CFSC-2G). Infection with Ad5-CMV-CCN1 induced large amounts of CCN1 protein in all these cells, resulting in an overload of the endoplasmic reticulum (ER) and in a compensatory unfolded protein response (UPR). The UPR resulted in upregulation of ER chaperones including BIP/Grp78, Grp94 and led to an activation of IRE1α as evidenced by spliced XBP1 mRNA with IRE1α-induced JNK phosphorylation. The UPR arm PERK and eIF2a was phosphorylated, combined with significant CHOP upregulation. Ad5-CMV-CCN1 induced HSC apoptosis that was evident by proteolytic cleavage of caspase-12, caspase-9 and the executor caspase-3 and positive TUNEL stain. Remarkably, Ad5-CMV-CCN1 effectively reduced collagen type I mRNA expression and protein. We conclude that the matricellular protein CCN1 gene transfer induces HSC apoptosis through ER stress and UPR.


Cellular Signalling | 2015

PDGF-D signaling in portal myofibroblasts and hepatic stellate cells proves identical to PDGF-B via both PDGF receptor type α and β.

Erawan Borkham-Kamphorst; Steffen K. Meurer; Eddy Van de Leur; U Haas; Lidia Tihaa; Ralf Weiskirchen

UNLABELLED Platelet-derived growth factor-D (PDGF-D) is one member of PDGF growth factors and known to signal by binding to and activating its cognate receptor type β (PDGFR-β). Beside PDGF-B, PDGF-D is a potent growth factor for stellate cell growth and proliferation and therefore potentiates the extracellular matrix deposition in liver fibrogenesis. We aimed to explore the signaling and molecular mechanisms of PDGF-D in liver fibrogenesis using the primary liver portal myofibroblasts and hepatic stellate cells. Unexpectedly we found PDGF-D to bind to PDGFR-α, thus inducing receptor endocytosis and decreasing the amount of PDGFR-α significantly. PDGF-D activates PDGFR-α specific tyrosine 754 and -1018 phosphorylation and CrkII, the adaptor protein that is specifically recruited by activated PDGFR-α. As a novel finding we could also demonstrate that recombinant PDGFR-α-Fc chimera homodimer is able to bind PDGF-D and thus prevent PDGF-D signaling. PDGF-D does induce individual PDGFR-β specific tyrosine phosphorylation similar to the PDGF-B. Additionally, PDGF-D enhances extracellular matrix accumulation comparable to the PDGF-B isoform. CONCLUSION PDGF-D signaling in pMF and HSC is identical to that of PDGF-B by binding to both PDGFR-α and -β.


European Journal of Cell Biology | 2012

BMP-7/TGF-β1 signalling in myoblasts: components involved in signalling and BMP-7-dependent blockage of TGF-β-mediated CTGF expression.

Steffen K. Meurer; Marcel Esser; Lidia Tihaa; Ralf Weiskirchen

We and others have recently described the antagonistic role of Bone morphogenetic protein-7 (BMP-7) in TGF-β signalling and myogenic differentiation. To specify the underlying mechanism(s), we here analysed the expression and function of the individual components mediating TGF-β1 and BMP-7 responses. We found that BMP-7 at a concentration of 25 ng/ml induces signalling exclusively via ALK2 and ALK3 leading to the activation of Smad1 and Smad5 and subsequent expression of Id proteins. In contrast, low doses of TGF-β1 (0.1 ng/ml) lead to an exclusive activation of ALK5 and phosphorylation of Smad2 and Smad3 that regulate specific target genes including connective tissue growth factor (CTGF). CTGF is rapidly induced by TGF-β1 already 1h after stimulation and reduced by BMP-7 application. Smad1/Smad5 or Id1/2 overexpression reduced the TGF-β1-mediated expression of CTGF. However, although siRNA-mediated knock down of Alk2/3 or Smad1/5 counteracts the BMP-7 effect on basal CTGF expression there was no consistent reversion of the observed BMP-7 effect on TGF-β1-mediated CTGF expression. Moreover, ALK5 inhibition using the SB431542 inhibitor significantly affected CTGF expression only at later time points whereas ERK1/2 inhibition completely abrogated CTGF expression. These findings point towards a regulatory role of BMP-7 that relies on modulation of Mitogen-activated protein kinases rather than mechanisms that are exclusively driven by differential Smad activation.


Biochimica et Biophysica Acta | 2016

Adenoviral CCN gene transfers induce in vitro and in vivo endoplasmic reticulum stress and unfolded protein response

Erawan Borkham-Kamphorst; Bettina Therese Steffen; Eddy Van de Leur; Lidia Tihaa; U Haas; Marius M. Woitok; Steffen K. Meurer; Ralf Weiskirchen

The endoplasmic reticulum (ER) is primarily recognized as the site of synthesis and folding of secreted membrane-bound and certain organelle-targeted proteins. Optimum protein folding requires several factors, including ATP, Ca2+ and an oxidizing environment to allow disulphide-bond formation. ER is highly sensitive to stress that perturb cellular energy levels, the redox state or the Ca2+ concentration. Such stresses reduce the protein folding capacity of the ER, resulting in the accumulation and aggregation of unfolded proteins, a condition referred to as unfolded protein response (UPR). Matricellular proteins of the CCN (CYR61, CTGF, NOV) family play essential roles in extracellular matrix signaling and turnover. They exhibit a similar type of organization and share a closely related primary structure, including 38 conserved cysteine residues. Since CCN1/CYR61 overexpression in hepatic stellate cells (HSC) induces ER stress-related apoptosis, we endeavored to investigate whether the adenovirus mediated gene transfer of other members of CCN proteins incurs ER stress in primary HSC and hepatocytes. We found Ad5-CMV-CCN2, Ad5-CMV-CCN3 and Ad5-CMV-CCN4 to induce ER stress and UPR comparable to Ad5-CMV-CCN1. UPR is a pro-survival response to reduce accumulation of unfolded proteins and restore normal ER functioning. If, however protein aggregation is persistent and the stress cannot be resolved, signaling switches from pro-survival to pro-apoptosis. The observed CCN-induced UPR is relevant in wound healing responses and essential for hepatic tissue repair following liver injury. Adenoviral gene transfer induced massive amounts of matricellular proteins proving to effectively mitigate liver fibrosis if targeted cell specific in HSC and myofibroblasts.

Collaboration


Dive into the Lidia Tihaa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

U Haas

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Tacke

RWTH Aachen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge