Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lidija Senerovic is active.

Publication


Featured researches published by Lidija Senerovic.


Applied Microbiology and Biotechnology | 2014

Properties and applications of undecylprodigiosin and other bacterial prodigiosins

Nada Stankovic; Lidija Senerovic; Tatjana Ilic-Tomic; Branka Vasiljevic; Jasmina Nikodinovic-Runic

The growing demand to fulfill the needs of present-day medicine in terms of novel effective molecules has lead to reexamining some of the old and known bacterial secondary metabolites. Bacterial prodigiosins (prodiginines) have a long history of being re markable multipurpose compounds, best examined for their anticancer and antimalarial activities. Production of prodigiosin in the most common producer strain Serratia marcescens has been described in great detail. However, few reports have discussed the ecophysiological roles of these molecules in the producing strains, as well as their antibiotic and UV-protective properties. This review describes recent advances in the production process, biosynthesis, properties, and applications of bacterial prodigiosins. Special emphasis is put on undecylprodigiosin which has generally been a less studied member of the prodigiosin family. In addition, it has been suggested that proteins involved in undecylprodigiosin synthesis, RedG and RedH, could be a useful addition to the biocatalytic toolbox being able to mediate regio- and stereoselective oxidative cyclization. Judging by the number of recent references (216 for the 2007–2013 period), it has become clear that undecylprodigiosin and other bacterial prodigiosins still hold surprises in terms of valuable properties and applicative potential to medical and other industrial fields and that they still deserve continuing research curiosity.


Food and Chemical Toxicology | 2013

Toxic essential oils. Part III: Identification and biological activity of new allylmethoxyphenyl esters from a Chamomile species (Anthemis segetalis Ten.)

Niko S. Radulović; Marko Z. Mladenović; Polina D. Blagojević; Zorica Stojanović-Radić; Tatjana Ilic-Tomic; Lidija Senerovic; Jasmina Nikodinovic-Runic

To determine the exact structure of previously tentatively identified minor essential-oil constituents of a Chamomile species (Antemis segetalis Ten. (Asteraceae)), we have synthesized a small combinatorial library of 54 regioisomeric allylmethoxyphenyl pentanoates and 2-pentenoates (49 completely new compounds). GC-MS in combination with 1D- and 2D-NMR analyses of the library compounds provided unambiguous data that led to a straightforward identification of the mentioned A. segetalis constituents as eugenyl angelate, 2-methylbutanoate and 3-methylbutanoate (0.21, 0.22, and 0.13 mg/100 g of fresh plant material, respectively). To assess the safety and potential beneficial pharmacological uses of these naturally occurring esters and several other library compounds (these were tested to provide relevant data for a SAR (structure-activity relationship) analysis), we have studied the effect of these compounds in several models of toxicity (acute toxicity against Artemia salina, cytotoxicity against two cell lines (fibroblast and melanoma)), as well as their acetylcholinesterase inhibitory and antibacterial activities. Anthemis segetalis constituents showed low to moderate activity in all tests. The obtained results suggest that the intake of these compounds in naturally available amounts, on their own, would probably not represent a risk to human health but the possible adverse interactions with the plant matrix should not be neglected.


Journal of Medicinal Chemistry | 2015

Synthesis and Evaluation of Series of Diazine-Bridged Dinuclear Platinum(II) Complexes through in Vitro Toxicity and Molecular Modeling: Correlation between Structure and Activity of Pt(II) Complexes

Lidija Senerovic; Marija D. Zivkovic; Aleksandar M. Veselinović; Aleksandar Pavic; Miloš I. Djuran; Snezana Rajkovic; Jasmina Nikodinovic-Runic

Polynuclear Pt(II) complexes are a novel class of promising anticancer agents with potential clinical significance. A series of pyrazine (pz) bridged dinuclear Pt(II) complexes with general formulas {[Pt(L)Cl]2(μ-pz)}(2+) (L, ethylenediamine, en; (±)-1,2-propylenediamine, 1,2-pn; isobutylenediamine, ibn; trans-(±)-1,2-diaminocyclohexane, dach; 1,3-propylenediamine, 1,3-pd; 2,2-dimethyl-1,3-propylenediamine, 2,2-diMe-1,3-pd) and one pyridazine (pydz) bridged {[Pt(en)Cl]2(μ-pydz)}(2+) complex were prepared. The anticancer potential of these complexes were determined through in vitro cytotoxicity assay in human fibroblasts (MRC5) and two carcinoma cell lines (A375 and HCT116), interaction with double stranded DNA through in vitro assay, and molecular docking study. All complexes inhibited cell proliferation with inhibitory concentrations in the 0.5-120 μM range. While {[Pt(1,3-pd)Cl]2(μ-pz)}(2+) showed improved activity and {[Pt(en)Cl]2(μ-pydz)}(2+) showed comparable activity to that of clinically relevant cisplatin, {[Pt(en)Cl]2(μ-pydz)}(2+) was less toxic in an assay with zebrafish (Danio rerio) embryos, causing no adverse developmental effects. The in vitro cytotoxicity of all diazine-bridged dinuclear Pt(II) complexes is discussed in correlation to their structural characteristics.


Cytokine | 2014

The critical role of macrophage migration inhibitory factor in insulin activity

Milica Vujicic; Lidija Senerovic; Ivana Nikolic; Tamara Saksida; Stanislava Stosic-Grujicic; Ivana Stojanovic

Macrophage migration inhibitory factor (MIF) is a molecule with plethora of functions such as regulation of immune response, hormone-like, enzymatic and chaperone-like activity. Further, MIF is a major participant in glucose homeostasis since it is an autocrine stimulator of insulin secretion. MIF absence in male knockout mice (MIF-KO) results in development of glucose intolerance, while sensitivity to insulin is fully preserved. Since our results confirm that beta cells from MIF-KO mice express, produce and secrete insulin similarly to beta cells of their wild type (WT) counterparts C57BL/6 mice, we hypothesize that MIF-KO-derived insulin is less active. Indeed, insulin from MIF-KO islets is unable to significantly induce glucose uptake into hepatocytes and to efficiently promote insulin-triggered Akt phosphorylation determined by immunoblot. However, MIFs tautomerase function is not crucial for insulin biosynthesis since MIF inhibitors had no impact on WT insulin activity. Importantly, MIF recognition by anti-MIF antibody (ELISA) after in vitro co-incubation with purified insulin was significantly lower suggesting that insulin covers MIF immunodominant epitope. In addition, MIF binds insulin within beta cell as confirmed by co-immunoprecipitation. WT and MIF-KO-derived insulin exhibited different cleavage patterns suggesting different protein conformations. Finally, pre-incubation of recombinant MIF with insulin promotes formation of insulin hexamers. These results imply that MIF probably enables proper insulin folding what results in insulin full activity. This newly discovered feature of the cytokine MIF could be potentially important for commercially produced insulin, for increasing its stability and/or bioavailability.


Journal of Ethnopharmacology | 2014

Cytotoxic effect of Reseda lutea L.: A case of forgotten remedy.

Niko S. Radulović; Dragan B. Zlatković; Tatjana Ilic-Tomic; Lidija Senerovic; Jasmina Nikodinovic-Runic

ETHNOPHARMACOLOGICAL RELEVANCE Reseda lutea L. (Resedaceae) or Wild Mignonette is a widely distributed plant species. Pliny the Elder (AD 23-AD 79), a Roman scholar and naturalist, reported the use of R. lutea for reducing tumors in his Historia naturalis. Accounts of the beneficial effects of R. lutea in tumor treatment could also be found in the works of later authors, such as Étienne François Geoffroy (1672-1731) and Samuel Frederick Gray (1766-1828). However, to date no in vivo or in vitro evidence exists in support of the alleged tumor healing properties of R. lutea. MATERIALS AND METHODS The composition of autolysates obtained from different organs (root, flower and fruit) of R. lutea was investigated by GC and GC-MS analyses and IR, 1D and 2D NMR spectroscopy. These analyses led to the discovery of a new compound isolated in pure form from the flower autolysate. Autolysates and their major constituents were submitted to MTT-dye reduction cytotoxic assay on human A375 (melanoma) and MRC5 (fibroblast) cell lines. Mechanism of the cytotoxic effects was studied by cell cycle analysis and Annexin V assay. RESULTS Benzyl isothiocyanate and 2-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate were identified as the major constituents of the root and flower autolysates, respectively (the later represents a new natural product). These compounds showed significant antiproliferative effects against both cell lines, which could also explain the observed high cytotoxic activity of the tested autolysates. Cell cycle analysis revealed apoptosis as the probable mechanism of cell death. CONCLUSIONS Tumor healing properties attributed to R. lutea in the pre-modern texts were substantiated by the herein obtained results. Two isothiocyanates were found to be the major carriers of the observed activity. Although there was a relatively low differential effect of the plant metabolites on transformed and non-transformed cell lines, one can argue that the noted strong cytotoxicity provides first evidence that could explain the long forgotten use of this particular species.


Bioorganic & Medicinal Chemistry | 2016

Synthesis and evaluation of thiophene-based guanylhydrazones (iminoguanidines) efficient against panel of voriconazole-resistant fungal isolates.

Vladimir Ajdačić; Lidija Senerovic; Marija Vranić; Marina Pekmezovic; Valentina Arsic-Arsnijevic; Aleksandar M. Veselinović; Jovana B. Veselinović; Bogdan A. Šolaja; Jasmina Nikodinovic-Runic; Igor Opsenica

A series of new thiophene-based guanylhydrazones (iminoguanidines) were synthesized in high yields using a straightforward two-step procedure. The antifungal activity of compounds was evaluated against a wide range of medicaly important fungal strains including yeasts, molds, and dermatophytes in comparison to clinically used drug voriconazole. Cytotoxic properties of compounds were also determined using human lung fibroblast cell line and hemolysis assay. All guanylhydrazones showed significant activity against broad spectrum of clinically important species of Candida spp., Aspergillus fumigatus, Fusarium oxysporum, Microsporum canis and Trichophyton mentagrophytes, which was in some cases comparable or better than activity of voriconazole. More importantly, compounds 10, 11, 13, 14, 18 and 21 exhibited excellent activity against voriconazole-resistant Candida albicans CA5 with very low minimal inhibitory concentration (MIC) values <2 μg mL(-1). Derivative 14, bearing bromine on the phenyl ring, was the most effective compound with MICs ranging from 0.25 to 6.25 μg mL(-1). However, bis-guanylhydrazone 18 showed better selectivity in terms of therapeutic index values. In vivo embryotoxicity on zebrafish (Danio rerio) showed improved toxicity profile of 11, 14 and 18 in comparison to that of voriconazole. Most guanylhydrazones also inhibited C. albicans yeast to hyphal transition, essential for its biofilm formation, while 11 and 18 were able to disperse preformed Candida biofilms. All guanylhydrazones showed the equal potential to interact with genomic DNA of C. albicans in vitro, thus indicating a possible mechanism of their action, as well as possible mechanism of observed cytotoxic effects. Tested compounds did not have significant hemolytic effect and caused low liposome leakage, which excluded the cell membrane as a primary target. On the basis of computational docking experiments using both human and cytochrome P450 from Candida it was concluded that the most active guanylhydrazones had minimal structural prerequisites to interact with the cytochrome P450 14α-demethylase (CYP51). Promising guanylhydrazone derivatives also showed satisfactory pharmacokinetic profile based on molecular calculations.


Journal of Applied Microbiology | 2013

Didehydroroflamycoin pentaene macrolide family from Streptomyces durmitorensis MS405T: production optimization and antimicrobial activity

Nada Stankovic; Lidija Senerovic; Z. Bojic-Trbojevic; Ivan Vučković; L. Vicovac; Branka Vasiljevic; Jasmina Nikodinovic-Runic

The aim of this study was to improve production of pentaene 32,33‐didehydroroflamycoin (DDHR) in Streptomyces durmitorensis MS405 strain to obtain quantities sufficient for in depth analysis of antimicrobial properties.


MedChemComm | 2016

Silver(I) complexes with quinazoline and phthalazine: synthesis, structural characterization and evaluation of biological activities

Nada D. Savić; Biljana Đ. Glišić; Hubert Wadepohl; Aleksandar Pavic; Lidija Senerovic; Jasmina Nikodinovic-Runic; Miloš I. Djuran

New silver(I) complexes with quinazoline (qz) and phthalazine (phtz), [Ag(NO3)(qz)]n (1) and {[Ag(CH3CN)]2(μ-phtz)2}[BF4]2 (2), have been synthesized and structurally characterized by using different spectroscopic and single-crystal X-ray diffraction techniques. The obtained results revealed that the reaction of AgNO3 with qz at room temperature in a 2:1 molar ratio led to the formation of the polynuclear complex 1. However, the reaction of AgBF4 with phtz under the same experimental conditions resulted in the formation of the dinuclear complex 2. The solution behaviour and air/light stability of these silver(I) complexes have been investigated. The complexes 1 and 2, along with the silver(I) salts used for their synthesis, were evaluated by in vitro antimicrobial studies against a panel of microbial strains that lead to many skin and soft tissue, respiratory, wound, and nosocomial infections. The obtained results indicate that all tested silver(I) compounds have good antibacterial activity with MIC values in the range from 1.5 to 15.6 μg mL−1 against the investigated strains. On the other hand, their antifungal activity against Candida albicans was moderate. In order to determine the therapeutic potential of 1 and 2, their antiproliferative effect on the normal human lung fibroblast cell line MRC5, hemolytic effect on red blood cells and embryotoxicity on zebrafish (Danio rerio) have also been evaluated.


ACS Chemical Biology | 2017

Long-Chain 4-Aminoquinolines as Quorum Sensing Inhibitors in Serratia marcescens and Pseudomonas aeruginosa

Ivana Aleksic; Sandra Šegan; Filip Andrić; Mario Zlatović; Ivana Moric; Dejan Opsenica; Lidija Senerovic

Antibiotic resistance has become a serious global threat to public health; therefore, improved strategies and structurally novel antimicrobials are urgently needed to combat infectious diseases. Here we report a new type of highly potent 4-aminoquinoline derivatives as quorum sensing inhibitors in Serratia marcescens and Pseudomonas aeruginosa, exhibiting weak bactericidal activities (minimum inhibitory concentration (MIC) > 400 μM). Through detailed structure-activity study, we have identified 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines (5 and 10) as biofilm formation inhibitors with 50% biofilm inhibition at 69 μM and 63 μM in S. marcescens and P. aeruginosa, respectively. These two compounds, 5 and 10, are the first quinoline derivatives with anti-biofilm formation activity reported in S. marcescens. Quantitative structure-activity relationship (QSAR) analysis identified structural descriptors such as Wiener indices, hyper-distance-path index (HDPI), mean topological charge (MTC), topological charge index (TCI), and log D(o/w)exp as the most influential in biofilm inhibition in this bacterial species. Derivative 10 is one of the most potent quinoline type inhibitors of pyocyanin production described so far (IC50 = 2.5 μM). While we have demonstrated that 5 and 10 act as Pseudomonas quinolone system (PQS) antagonists, the mechanism of inhibition of S. marcescens biofilm formation with these compounds remains open since signaling similar to P. aeruginosa PQS system has not yet been described in Serratia and activity of these compounds on acylhomoserine lactone (AHL) signaling has not been detected. Our data show that 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines present the promising scaffolds for developing antivirulence and anti-biofilm formation agents against multidrug-resistant bacterial species.


Journal of Materials Chemistry B | 2014

Undecylprodigiosin conjugated monodisperse gold nanoparticles efficiently cause apoptosis in colon cancer cells in vitro

Jasmina Nikodinovic-Runic; Marija Mojić; Yijin Kang; Danijela Maksimovic-Ivanic; Sanja Mijatović; Branka Vasiljevic; Vojislav R. Stamenkovic; Lidija Senerovic

Bacterial pigment undecylprodigiosin (UP) was produced using Streptomyces sp. JS520 and conjugated to monodisperse gold nanoparticles (UP-Au). Both UP and UP-Au showed cytocidal activity towards melanoma (A375), lung carcinoma (A549), breast cancer (MCF-7) and colon cancer (HCT-116) cells, inducing apoptosis with IC50 values ranging from 0.4 to 4 μg ml-1. Unconjugated UP had a tendency to lose its activity over time and to change biophysical characteristics over pH. The loss of the pigment potency was overcome by conjugation with gold nanoparticles. UP-Au exhibited high stability over pH 3.8 to 7.4 and its activity remained unaffected in time. Nano-packing changed the mechanism of UP toxicity by converting the intracellular signals from a mitochondrial dependent to a mitochondrial independent apoptotic process. The availability of nonpyrogenic UP in high amounts, together with specific anticancer activity and improved stability in the complex with gold nanoparticles, presents a novel platform for further development of UP-Au complexes as an anticancer drug suitable for clinical applications.

Collaboration


Dive into the Lidija Senerovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivana Moric

University of Belgrade

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge