Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lido Calorini is active.

Publication


Featured researches published by Lido Calorini.


Cancer Research | 2010

Reciprocal Activation of Prostate Cancer Cells and Cancer-Associated Fibroblasts Stimulates Epithelial-Mesenchymal Transition and Cancer Stemness

Elisa Giannoni; Francesca Bianchini; L. Masieri; Sergio Serni; Eugenio Torre; Lido Calorini; Paola Chiarugi

Although cancer-associated fibroblasts (CAF) are key determinants in the malignant progression of cancer, their functional contribution to this process is still unclear. Analysis of the mutual interplay between prostate carcinoma cells and CAFs revealed a mandatory role of carcinoma-derived interleukin-6 in fibroblast activation. In turn, activated fibroblasts through secretion of metalloproteinases elicit in cancer cells a clear epithelial-mesenchymal transition (EMT), as well as enhancement of tumor growth and development of spontaneous metastases. CAF-induced EMT leads prostate carcinoma cells to enhance expression of stem cell markers, as well as the ability to form prostaspheres and to self-renew. Hence, the paracrine interplay between CAFs and cancer cells leads to an EMT-driven gain of cancer stem cell properties associated with aggressiveness and metastatic spread.


Antioxidants & Redox Signaling | 2011

Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness.

Elisa Giannoni; Francesca Bianchini; Lido Calorini; Paola Chiarugi

Cancer-associated fibroblasts (CAFs) are key determinants in the malignant progression of cancer, supporting tumorigenesis and metastasis. CAFs also mediate epithelial mesenchymal transition (EMT) of tumor cells and their achievement of stem cell traits. We demonstrate that CAFs induce EMT and stemness through a proinflammatory signature, which exploits reactive oxygen species to drive a migratory and aggressive phenotype of prostate carcinoma cells. CAFs exert their propelling role for EMT in strict dependence on cycloxygenase-2 (COX-2), nuclear factor-κB, and hypoxia-inducible factor-1. CAF-secreted metalloproteases elicit in carcinoma cells a Rac1b/COX-2-mediated release of reactive oxygen species, which is mandatory for EMT, stemness, and dissemination of metastatic cells. Tumor growth is abolished, and metastasis formation is severely impaired by RNA interfering-mediated targeting of the proinflammatory signature, thereby supporting the therapeutic targeting of the circuitry COX-2/nuclear factor-κB /hypoxia-inducible factor-1 as a valuable antimetastatic tool affecting cancer cell malignancy.


Cancer Research | 2009

EphA2 Reexpression Prompts Invasion of Melanoma Cells Shifting from Mesenchymal to Amoeboid-like Motility Style

Matteo Parri; Maria Letizia Taddei; Francesca Bianchini; Lido Calorini; Paola Chiarugi

Eph tyrosine kinases instruct cell for a repulsive behavior, regulating cell shape, adhesion, and motility. Beside its role during embryogenesis, neurogenesis, and angiogenesis, EphA2 kinase is frequently up-regulated in tumor cells of different histotypes, including prostate, breast, colon, and lung carcinoma, as well as melanoma. Although a function in both tumor onset and metastasis has been proposed, the role played by EphA2 is still debated. Here, we showed that EphA2 reexpression in B16 murine melanoma cells, which use a defined mesenchymal invasion strategy, converts their migration style from mesenchymal to amoeboid-like, conferring a plasticity in tumor cell invasiveness. Indeed, in response to reexpression and activation of EphA2, melanoma cells activate a nonproteolytic invasive program that proceeds through the activation of cytoskeleton motility, the retraction of cell protrusions, a Rho-mediated rounding of the cell body, and squeezing among three-dimensional matrix, giving rise to successful lung and peritoneal lymph node metastases. Our results suggest that, among the redundant mechanisms operating in tumor cells to penetrate the anatomic barriers of host tissues, EphA2 plays a pivotal role in the adaptive switch in migration pattern and mechanism, defining and distinguishing tumor cell invasion strategies. Thus, targeting EphA2 might represent a future approach for the therapy of cancer dissemination.


American Journal of Pathology | 2009

Kinase-Dependent and -Independent Roles of EphA2 in the Regulation of Prostate Cancer Invasion and Metastasis

Maria Letizia Taddei; Matteo Parri; Adriano Angelucci; Barbara Onnis; Francesca Bianchini; Elisa Giannoni; Giovanni Raugei; Lido Calorini; Nadia Rucci; Anna Teti; Mauro Bologna; Paola Chiarugi

Ligand-activated Eph tyrosine kinases regulate cellular repulsion, morphology, adhesion, and motility. EphA2 kinase is frequently up-regulated in several different types of cancers, including prostate, breast, colon, and lung carcinomas, as well as in melanoma. The existing data do not clarify whether EphA2 receptor phosphorylation or its simple overexpression, which likely leads to Eph kinase-independent responses, plays a role in the progression of malignant prostate cancer. In this study, we address the role of EphA2 tyrosine phosphorylation in prostate carcinoma cell adhesion, motility, invasion, and formation of metastases. Tumor cells expressing kinase-deficient EphA2 mutants, as well as an EphA2 variant lacking the cytoplasmic domain, are defective in ephrinA1-mediated cell rounding, retraction fiber formation, de-adhesion from the extracellular matrix, RhoA and Rac1 GTPase regulation, three-dimensional matrix invasion, and in vivo metastasis, suggesting a key role for EphA2 kinase activity. Nevertheless, EphA2 regulation of cell motility and invasion, as well as the formation of bone and visceral tumor colonies, reveals a component of both EphA2 kinase-dependent and -independent features. These results uncover a differential requirement for EphA2 kinase activity in the regulation of prostate carcinoma metastasis outcome, suggesting that although the kinase activity of EphA2 is required for the regulation of cell adhesion and cytoskeletal rearrangement, some distinct kinase-dependent and -independent pathways likely cooperate to drive cancer cell migration, invasion, and metastasis outcome.


Cancer and Metastasis Reviews | 2014

Extracellular acidity, a "reappreciated" trait of tumor environment driving malignancy: perspectives in diagnosis and therapy

Silvia Peppicelli; Francesca Bianchini; Lido Calorini

Tumors are ecosystems which develop from stem cells endowed with unlimited self-renewal capability and genetic instability, under the effects of mutagenesis and natural selection imposed by environmental changes. Abnormal vascularization, reduced lymphatic network, uncontrolled cell growth frequently associated with hypoxia, and extracellular accumulation of glucose metabolites even in the presence of an adequate oxygen level are all factors contributing to reduce pH in the extracellular space of tumors. Evidence is accumulating that acidity is associated with a poor prognosis and participates actively to tumor progression. This review addresses some of the most experimental evidences providing that acidity of tumor environment facilitates local invasiveness and metastatic dissemination, independently from hypoxia, with which acidity is often but not always associated. Clinical investigations have also shown that tumors with acidic environment are associated with resistance to chemotherapy and radiation-induced apoptosis, suppression of cytotoxic lymphocytes, and natural killer cells tumoricidal activity. Therefore, new technologies for functional and molecular imaging as well as strategies directed to target low extracellular pH and low pH-adapted tumor cells might represent important issues in oncology.


Magnetic Resonance in Medicine | 2004

Persistent contrast enhancement by sterically stabilized paramagnetic liposomes in murine melanoma

Ivano Bertini; Francesca Bianchini; Lido Calorini; Stefano Colagrande; Marco Fragai; Alessandro Franchi; Oreste Gallo; Cinzia Gavazzi; Claudio Luchinat

In the present research, we investigated the use of paramagnetic liposomes as contrast agents (CAs) for the detection of solid tumors. The liposomes were sterically stabilized by a polyethylene glycol (PEG) coating, and their size was constrained to ∼100 nm. Dimyristoyl‐sn‐glycero‐3‐phosphoethanolamine‐N‐diethylene‐triaminepentaacetate (DMPE‐DTPA) was used as the gadolinium‐carrying fatty acid chain. The relaxation properties were characterized through nuclear magnetic relaxation dispersion (NMRD) measurements, and analyzed with the use of theories and computer programs that are adequate for slowly rotating systems. Their relaxivity at 1.5 T was found to be acceptable for in vivo use. We then tested the liposomes against B16‐F10 murine melanomas using standard T1‐weighted schemes at 1.5 T, and concentrations corresponding to 0.03 mmol/kg of gadolinium (i.e., three to six times lower than the concentration of the small gadolinium complexes in clinical use). The blood half‐life was found to be 120 ± 20 min. The experiments show a good contrast enhancement in the tumor (33% ± 22%) 2 hr after administration, a further increase (43 ± 27%) 20 hr after administration, and a decrease (25% ± 14%) 54 hr after administration. High persistence of the CA was also observed in the liver and intestine, as expected in a hepatobiliar excretion pathway. Magn Reson Med 52:669–672, 2004.


Molecular Cancer Research | 2011

EphA2 induces metastatic growth regulating amoeboid motility and clonogenic potential in prostate carcinoma cells.

Maria Letizia Taddei; Matteo Parri; Adriano Angelucci; Francesca Bianchini; Chiara Marconi; Elisa Giannoni; Giovanni Raugei; Mauro Bologna; Lido Calorini; Paola Chiarugi

EphA2 kinase regulates cell shape, adhesion, and motility and is frequently overexpressed in several cancers, including melanoma, prostate, breast, and colon cancers and lung carcinoma. Although a function in both tumor onset and metastasis has been proposed, the role played by EphA2 in tumor progression is still debated. In melanoma, EphA2 has been reported to affect cell migration and invasiveness allowing cells to move by a proteolysis-independent strategy, commonly referred as amoeboid motility. With the aim to understand the role of EphA2 in prostate cancer metastatic spreading, we stably silenced EphA2 expression in a model of aggressive metastatic prostate carcinoma. Our results show that EphA2 drives the metastatic program of prostate carcinoma, although its involvement greatly differs among metastatic steps. Indeed, EphA2 expression (i) greatly affects prostate carcinoma cell motility style, guiding an amoeboid movement based on Rho-mediated cell rounding and independent from metalloprotases, (ii) is ineffective on transendothelial migration, adhesion onto extracellular matrix proteins, and on resistance to anoikis, (iii) regulates clonogenic potential of prostate carcinoma, thereby increasing anchorage-independent growth and self-renewal, prostasphere formation, tumor onset, dissemination to bone, and growth of metastatic colonies. Our finding indicate that EphA2-overexpressing prostate carcinoma cells gain an invasive benefit from their amoeboid motility style to escape from primary tumors and then, enhancing their clonogenic potential successfully target bone and grow metastases, thereby acknowledging EphA2 as a target for antimetastatic therapy of aggressive prostate cancers. Mol Cancer Res; 9(2); 149–60. ©2011 AACR.


Journal of Medicinal Chemistry | 2010

Click-chemistry-derived triazole ligands of arginine-glycine-aspartate (RGD) integrins with a broad capacity to inhibit adhesion of melanoma cells and both in vitro and in vivo angiogenesis.

Andrea Trabocchi; Gloria Menchi; Nicoletta Cini; Francesca Bianchini; Silvia Raspanti; Anna Bottoncetti; Alberto Pupi; Lido Calorini; Antonio Guarna

A click chemistry approach was applied for the discovery of triazole-based arginine-glycine-aspartate (RGD) mimetics by Cu(I)-catalyzed 1,3-dipolar alkyne-azide coupling reaction, which showed binding affinity properties toward α(v)β(3)/α(v)β(5) integrins. Biological assays showed compound 18 capable of binding α(v)β(3) integrin with nanomolar affinity according to a two-sites model, and molecular modeling studies revealed a peculiar π-stacking interaction between the triazole ring and Tyr178 side chain. Accordingly, compound 18 inhibited the adhesion of integrin-expressing human melanoma cells to RGD-containing proteins of the extracellular matrix, such as vitronectin, fibronectin, and osteopontin, and also angiogenesis in in vitro and in vivo experimental models. The relevant biological effects exerted by compound 18 suggest its potential application as an antiangiogenic agent in the diagnosis and therapy of tumors where α(v)β(3) integrin expression is up-regulated.


Blood | 2011

Endothelial progenitor cell–dependent angiogenesis requires localization of the full-length form of uPAR in caveolae

Francesca Margheri; Anastasia Chillà; Anna Laurenzana; Simona Serratì; Benedetta Mazzanti; Riccardo Saccardi; Michela Santosuosso; Giovanna Danza; Niccolò Sturli; Fabiana Rosati; Lucia Magnelli; Laura Papucci; Lido Calorini; Francesca Bianchini; Mario Del Rosso; Gabriella Fibbi

Endothelial urokinase-type plasminogen activator receptor (uPAR) is thought to provide a regulatory mechanism in angiogenesis. Here we studied the proangiogenic role of uPAR in endothelial colony-forming cells (ECFCs), a cell population identified in human umbilical blood that embodies all of the properties of an endothelial progenitor cell matched with a high proliferative rate. By using caveolae-disrupting agents and by caveolin-1 silencing, we have shown that the angiogenic properties of ECFCs depend on caveolae integrity and on the presence of full-length uPAR in such specialized membrane invaginations. Inhibition of uPAR expression by antisense oligonucleotides promoted caveolae disruption, suggesting that uPAR is an inducer of caveolae organization. Vascular endothelial growth factor (VEGF) promoted accumulation of uPAR in ECFC caveolae in its undegraded form. We also demonstrated that VEGF-dependent ERK phosphorylation required integrity of caveolae as well as caveolar uPAR expression. VEGF activity depends on inhibition of ECFC MMP12 production, which results in impairment of MMP12-dependent uPAR truncation. Further, MMP12 overexpression in ECFC inhibited vascularization in vitro and in vivo. Our data suggest that intratumor homing of ECFCs suitably engineered to overexpress MMP12 could have the chance to control uPAR-dependent activities required for tumor angiogenesis and malignant cells spreading.


Clinical & Experimental Metastasis | 2008

Tumoral and macrophage uPAR and MMP-9 contribute to the invasiveness of B16 murine melanoma cells

Chiara Marconi; Francesca Bianchini; Antonella Mannini; Gabriele Mugnai; Salvatore Ruggieri; Lido Calorini

The aim of this study was to investigate whether tumor cells as well as tumor-associated macrophages (TAMs) contribute to the generation of protease activities essential to tumor cell invasiveness, such as matrix metalloproteinase 2 and 9 (MMP-2 and MMP-9), and the urokinase-type plasminogen activator (uPA) and uPA receptor (uPAR). We found that the enhanced invasiveness through Matrigel-coated filters of B16 murine melanoma cells stimulated with IFNγ was associated with an higher expression of uPAR and MMP-9 in these cells. Moreover, treatment with anti-MMP-9 or anti-uPAR monoclonal antibodies abrogated the increase of invasiveness in IFNγ-stimulated melanoma cells, suggesting a cooperation of uPA system and MMP-9 in cytokine-stimulated invasiveness. Invasiveness through Matrigel was also enhanced in B16 melanoma cells exposed to a medium conditioned by TAMs, represented in our experimental model by thioglycollate-elicited macrophages co-cultivated with melanoma cells. Macrophages isolated from these co-cultures were found to express higher levels of uPAR and MMP-9 compared to macrophage cultures alone, and the pro-invasive activity of the co-culture-conditioned medium was abrogated by anti-MMP-9 monoclonal antibodies, but not anti-uPAR monoclonal antibodies. Furthermore, the enhanced uPAR and MMP-9 expression in macrophages co-cultivated with tumor cells seems a rather specific phenomenon, generated through a cell-to-cell contact mechanism. On the whole, our data point to a cooperation between tumor cells and macrophages elicited by tumor cells themselves in generating key enzymes essential in the promotion of tumor invasiveness, such as uPAR and MMP-9.

Collaboration


Dive into the Lido Calorini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge