Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liedewij Laan is active.

Publication


Featured researches published by Liedewij Laan.


Nature | 2006

Assembly dynamics of microtubules at molecular resolution

Jacob W.J. Kerssemakers; E. Laura Munteanu; Liedewij Laan; Tim L. Noetzel; Marcel E. Janson; Marileen Dogterom

Microtubules are highly dynamic protein polymers that form a crucial part of the cytoskeleton in all eukaryotic cells. Although microtubules are known to self-assemble from tubulin dimers, information on the assembly dynamics of microtubules has been limited, both in vitro and in vivo, to measurements of average growth and shrinkage rates over several thousands of tubulin subunits. As a result there is a lack of information on the sequence of molecular events that leads to the growth and shrinkage of microtubule ends. Here we use optical tweezers to observe the assembly dynamics of individual microtubules at molecular resolution. We find that microtubules can increase their overall length almost instantaneously by amounts exceeding the size of individual dimers (8 nm). When the microtubule-associated protein XMAP215 (ref. 6) is added, this effect is markedly enhanced and fast increases in length of about 40–60 nm are observed. These observations suggest that small tubulin oligomers are able to add directly to growing microtubules and that XMAP215 speeds up microtubule growth by facilitating the addition of long oligomers. The achievement of molecular resolution on the microtubule assembly process opens the way to direct studies of the molecular mechanism by which the many recently discovered microtubule end-binding proteins regulate microtubule dynamics in living cells.


Nature | 2007

Reconstitution of a microtubule plus-end tracking system in vitro

Peter Bieling; Liedewij Laan; Henry Schek; E. Laura Munteanu; Linda Sandblad; Marileen Dogterom; Damian Brunner; Thomas Surrey

The microtubule cytoskeleton is essential to cell morphogenesis. Growing microtubule plus ends have emerged as dynamic regulatory sites in which specialized proteins, called plus-end-binding proteins (+TIPs), bind and regulate the proper functioning of microtubules. However, the molecular mechanism of plus-end association by +TIPs and their ability to track the growing end are not well understood. Here we report the in vitro reconstitution of a minimal plus-end tracking system consisting of the three fission yeast proteins Mal3, Tip1 and the kinesin Tea2. Using time-lapse total internal reflection fluorescence microscopy, we show that the EB1 homologue Mal3 has an enhanced affinity for growing microtubule end structures as opposed to the microtubule lattice. This allows it to track growing microtubule ends autonomously by an end recognition mechanism. In addition, Mal3 acts as a factor that mediates loading of the processive motor Tea2 and its cargo, the Clip170 homologue Tip1, onto the microtubule lattice. The interaction of all three proteins is required for the selective tracking of growing microtubule plus ends by both Tea2 and Tip1. Our results dissect the collective interactions of the constituents of this plus-end tracking system and show how these interactions lead to the emergence of its dynamic behaviour. We expect that such in vitro reconstitutions will also be essential for the mechanistic dissection of other plus-end tracking systems.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Force-generation and dynamic instability of microtubule bundles

Liedewij Laan; Julien Husson; E. Laura Munteanu; Jacob W.J. Kerssemakers; Marileen Dogterom

Individual dynamic microtubules can generate pushing or pulling forces when their growing or shrinking ends are in contact with cellular objects such as the cortex or chromosomes. These microtubules can operate in parallel bundles, for example when interacting with mitotic chromosomes. Here, we investigate the force-generating capabilities of a bundle of growing microtubules and study the effect that force has on the cooperative dynamics of such a bundle. We used an optical tweezers setup to study microtubule bundles growing against a microfabricated rigid barrier in vitro. We show that multiple microtubules can generate a pushing force that increases linearly with the number of microtubules present. In addition, the bundle can cooperatively switch to a shrinking state, due to a force-induced coupling of the dynamic instability of single microtubules. In the presence of GMPCPP, bundle catastrophes no longer occur, and high bundle forces are reached more effectively. We reproduce the observed behavior with a simple simulation of microtubule bundle dynamics that takes into account previously measured force effects on single microtubules. Using this simulation, we also show that a constant compressive force on a growing bundle leads to oscillations in bundle length that are of potential relevance for chromosome oscillations observed in living cells.


Cell Cycle | 2012

End-on microtubule-dynein interactions and pulling-based positioning of microtubule organizing centers.

Liedewij Laan; Sophie Roth; Marileen Dogterom

During important cellular processes such as centrosome and spindle positioning, dynein at the cortex interacts with dynamic microtubules in an apparent “end-on” fashion. It is well-established that dynein can generate forces by moving laterally along the microtubule lattice, but much less is known about dynein’s interaction with dynamic microtubule ends. In this paper, we review recent in vitro experiments that show that dynein, attached to an artificial cortex, is able to capture microtubule ends, regulate microtubule dynamics and mediate the generation of pulling forces on shrinking microtubules. We further review existing ideas on the involvement of dynein-mediated cortical pulling forces in the positioning of microtubule organizing centers such as centrosomes. Recent in vitro experiments have demonstrated that cortical pulling forces in combination with pushing forces can lead to reliable centering of microtubule asters in quasi two-dimensional microfabricated chambers. In these experiments, pushing leads to slipping of microtubule ends along the chamber boundaries, resulting in an anisotropic distribution of cortical microtubule contacts that favors centering, once pulling force generators become engaged. This effect is predicted to be strongly geometry-dependent, and we therefore finally discuss ongoing efforts to repeat these experiments in three-dimensional, spherical and deformable geometries.


New Journal of Physics | 2012

Positioning of microtubule organizing centers by cortical pushing and pulling forces

Nenad Pavin; Liedewij Laan; Rui Ma; Marileen Dogterom; Frank Jülicher

Positioning of microtubule (MT) organizing centers with respect to the confining geometry of cells depends on pushing and/or pulling forces generated by MTs that interact with the cell cortex (Dogterom et al 2005 Curr. Opin. Cell Biol. 17 67–74). How, in living cells, these forces lead to proper positioning is still largely an open question. Recently, it was shown by in vitro experiments using artificial microchambers that in a square geometry, MT asters center more reliably by a combination of pulling and pushing forces than by pushing forces alone (Laan et al 2012a Cell 148 502–14). These findings were explained by a physical description of aster mechanics that includes slipping of pushing MT ends along chamber boundaries. In this paper, we extend that theoretical work by studying the influence of the shape of the confining geometry on the positioning process. We find that pushing and pulling forces can have centering or off-centering behavior in different geometries. Pushing forces center in a one-dimensional and a square geometry, but lead to off-centering in a circle if slipping is sufficiently pronounced. Pulling forces, however, do not center in a one-dimensional geometry, but improve centering in a circle and a square. In an elongated stadium geometry, positioning along the short axis depends mainly on pulling forces, while positioning along the long axis depends mainly on pushing forces. Our theoretical results suggest that different positioning strategies could be used by different cell types.


eLife | 2015

Evolutionary adaptation after crippling cell polarization follows reproducible trajectories

Liedewij Laan; John H Koschwanez; Andrew W. Murray

Cells are organized by functional modules, which typically contain components whose removal severely compromises the modules function. Despite their importance, these components are not absolutely conserved between parts of the tree of life, suggesting that cells can evolve to perform the same biological functions with different proteins. We evolved Saccharomyces cerevisiae for 1000 generations without the important polarity gene BEM1. Initially the bem1∆ lineages rapidly increase in fitness and then slowly reach >90% of the fitness of their BEM1 ancestors at the end of the evolution. Sequencing their genomes and monitoring polarization reveals a common evolutionary trajectory, with a fixed sequence of adaptive mutations, each improving cell polarization by inactivating proteins. Our results show that organisms can be evolutionarily robust to physiologically destructive perturbations and suggest that recovery by gene inactivation can lead to rapid divergence in the parts list for cell biologically important functions. DOI: http://dx.doi.org/10.7554/eLife.09638.001


Methods in Cell Biology | 2010

In Vitro Assays to Study Force Generation at Dynamic Microtubule Ends

Liedewij Laan; Marileen Dogterom

Biopolymers are essential for cellular organization. They bridge the cell interior, forming a framework that is used as a reference for different cellular organelles. Interestingly, this framework called the cytoskeleton is not static but constantly reorganizes. The dynamics of the cytoskeleton allows the cell to rearrange its interior for various processes such as cell division. This dynamic reorganization relies at least partly on forces that arise from assembly and disassembly of the cytoskeletal polymers. In many cases, these forces are generated when cytoskeletal polymers interact with the cell boundary. This chapter focuses on force generation by and regulation of microtubules (MTs) that interact with opposing barriers. In this chapter we describe four in vitro assays to study how MT interactions with the cell boundary play a role in cellular organization. In our minimal systems, (functionalized) microfabricated barriers mimic cell boundaries. We carefully design experiments where we grow MTs against these microfabricated structures to study a specific cellular process. Furthermore in this chapter different methods and assays necessary to realize these in vitro experiments are described. Section II describes the materials used, and Section III elaborates on the microfabrication. In Section III.C we explain how we specifically label our microfabricated structures, and in Section III.D we present how these functionalized microfabricated structures are incorporated into assays, with a discussion of the details of the assays themselves. Finally in Section IV we give examples of data obtained with these assays, and in Section V we discuss the assays in a general context.


New Journal of Physics | 2014

General theory for the mechanics of confined microtubule asters

Rui Ma; Liedewij Laan; Marileen Dogterom; Nenad Pavin; Frank Jülicher

In cells, dynamic microtubules organize into asters or spindles to assist positioning of organelles. Two types of forces are suggested to contribute to the positioning process: (i) microtubule-growth based pushing forces; and (ii) motor protein mediated pulling forces. In this paper, we present a general theory to account for aster positioning in a confinement of arbitrary shape. The theory takes account of microtubule nucleation, growth, catastrophe, slipping, as well as interaction with cortical force generators. We calculate microtubule distributions and forces acting on microtubule organizing centers in a sphere and in an ellipsoid. Positioning mechanisms based on both pushing forces and pulling forces can be distinguished in our theory for different parameter regimes or in different geometries. In addition, we investigate positioning of microtubule asters in the case of asymmetric distribution of motors. This analysis enables us to characterize situations relevant for Caenorrhabditis elegans embryos.


Methods in Enzymology | 2014

Reconstitution of cortical Dynein function.

Sophie Roth; Liedewij Laan; Marileen Dogterom

Cytoplasmic dynein is a major microtubule (MT)-associated motor in nearly all eukaryotic cells. A subpopulation of dyneins associates with the cell cortex and the interaction of this cortical dynein with MTs helps to drive processes such as nuclear migration, mitotic spindle orientation, and cytoskeletal reorientation during wound healing. In this chapter, we describe three types of assays in which interactions between cortical dynein and MTs are reconstituted in vitro at increasing levels of complexity. In the first 1D assay, MTs, nucleated from a centrosome attached to a surface, grow against dynein-coated gold barriers. In this assay configuration, the interactions between MTs and dynein attached to a barrier can be studied in great detail. In the second and third assays, a freely moving dynamic aster is placed in either a 2D microfabricated chamber or a 3D water-in-oil emulsion droplet, with dynein-coated boundaries. These assays can be used to study how cortical dynein positions centrosomes. Finally, we discuss future possibilities for increasing the complexity of these reconstituted systems.


Cell | 2015

Physical and Mathematical Modeling in Experimental Papers.

Wolfram Möbius; Liedewij Laan

An increasing number of publications include modeling. Often, such studies help us to gain a deeper insight into the phenomena studied and break down barriers between experimental and theoretical communities. However, combining experimental and theoretical work is challenging for authors, reviewers, and readers. To help maximize the usefulness and impact of combined theoretical and experimental research, this Primer describes the purpose, usefulness, and different types of models and addresses the practical aspect of integrated publications by outlining characteristics of good modeling, presentation, and fruitful collaborations.

Collaboration


Dive into the Liedewij Laan's collaboration.

Top Co-Authors

Avatar

Marileen Dogterom

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eveline T. Diepeveen

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jacob W.J. Kerssemakers

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Sophie Roth

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge