Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lief E. Fenno is active.

Publication


Featured researches published by Lief E. Fenno.


Nature | 2011

Neocortical excitation/inhibition balance in information processing and social dysfunction

Ofer Yizhar; Lief E. Fenno; Matthias Prigge; Franziska Schneider; Thomas J. Davidson; Daniel J. O’Shea; Vikaas S. Sohal; Inbal Goshen; Joel Finkelstein; Jeanne T. Paz; Katja Stehfest; Roman Fudim; Charu Ramakrishnan; John R. Huguenard; Peter Hegemann; Karl Deisseroth

Severe behavioural deficits in psychiatric diseases such as autism and schizophrenia have been hypothesized to arise from elevations in the cellular balance of excitation and inhibition (E/I balance) within neural microcircuitry. This hypothesis could unify diverse streams of pathophysiological and genetic evidence, but has not been susceptible to direct testing. Here we design and use several novel optogenetic tools to causally investigate the cellular E/I balance hypothesis in freely moving mammals, and explore the associated circuit physiology. Elevation, but not reduction, of cellular E/I balance within the mouse medial prefrontal cortex was found to elicit a profound impairment in cellular information processing, associated with specific behavioural impairments and increased high-frequency power in the 30–80 Hz range, which have both been observed in clinical conditions in humans. Consistent with the E/I balance hypothesis, compensatory elevation of inhibitory cell excitability partially rescued social deficits caused by E/I balance elevation. These results provide support for the elevated cellular E/I balance hypothesis of severe neuropsychiatric disease-related symptoms.


Neuron | 2011

Optogenetics in Neural Systems

Ofer Yizhar; Lief E. Fenno; Thomas J. Davidson; Murtaza Mogri; Karl Deisseroth

Both observational and perturbational technologies are essential for advancing the understanding of brain function and dysfunction. But while observational techniques have greatly advanced in the last century, techniques for perturbation that are matched to the speed and heterogeneity of neural systems have lagged behind. The technology of optogenetics represents a step toward addressing this disparity. Reliable and targetable single-component tools (which encompass both light sensation and effector function within a single protein) have enabled versatile new classes of investigation in the study of neural systems. Here we provide a primer on the application of optogenetics in neuroscience, focusing on the single-component tools and highlighting important problems, challenges, and technical considerations.


Annual Review of Neuroscience | 2011

The Development and Application of Optogenetics

Lief E. Fenno; Ofer Yizhar; Karl Deisseroth

Genetically encoded, single-component optogenetic tools have made a significant impact on neuroscience, enabling specific modulation of selected cells within complex neural tissues. As the optogenetic toolbox contents grow and diversify, the opportunities for neuroscience continue to grow. In this review, we outline the development of currently available single-component optogenetic tools and summarize the application of various optogenetic tools in diverse model organisms.


Nature | 2011

Amygdala circuitry mediating reversible and bidirectional control of anxiety

Kay M. Tye; Rohit Prakash; Sung-Yon Kim; Lief E. Fenno; Logan Grosenick; Hosniya Zarabi; Kimberly R. Thompson; Viviana Gradinaru; Charu Ramakrishnan; Karl Deisseroth

Anxiety—a sustained state of heightened apprehension in the absence of immediate threat—becomes severely debilitating in disease states. Anxiety disorders represent the most common of psychiatric diseases (28% lifetime prevalence) and contribute to the aetiology of major depression and substance abuse. Although it has been proposed that the amygdala, a brain region important for emotional processing, has a role in anxiety, the neural mechanisms that control anxiety remain unclear. Here we explore the neural circuits underlying anxiety-related behaviours by using optogenetics with two-photon microscopy, anxiety assays in freely moving mice, and electrophysiology. With the capability of optogenetics to control not only cell types but also specific connections between cells, we observed that temporally precise optogenetic stimulation of basolateral amygdala (BLA) terminals in the central nucleus of the amygdala (CeA)—achieved by viral transduction of the BLA with a codon-optimized channelrhodopsin followed by restricted illumination in the downstream CeA—exerted an acute, reversible anxiolytic effect. Conversely, selective optogenetic inhibition of the same projection with a third-generation halorhodopsin (eNpHR3.0) increased anxiety-related behaviours. Importantly, these effects were not observed with direct optogenetic control of BLA somata, possibly owing to recruitment of antagonistic downstream structures. Together, these results implicate specific BLA–CeA projections as critical circuit elements for acute anxiety control in the mammalian brain, and demonstrate the importance of optogenetically targeting defined projections, beyond simply targeting cell types, in the study of circuit function relevant to neuropsychiatric disease.


Nature | 2009

Temporally precise in vivo control of intracellular signalling

Raag D. Airan; Kimberly R. Thompson; Lief E. Fenno; Hannah Bernstein; Karl Deisseroth

In the study of complex mammalian behaviours, technological limitations have prevented spatiotemporally precise control over intracellular signalling processes. Here we report the development of a versatile family of genetically encoded optical tools (‘optoXRs’) that leverage common structure–function relationships among G-protein-coupled receptors (GPCRs) to recruit and control, with high spatiotemporal precision, receptor-initiated biochemical signalling pathways. In particular, we have developed and characterized two optoXRs that selectively recruit distinct, targeted signalling pathways in response to light. The two optoXRs exerted opposing effects on spike firing in nucleus accumbens in vivo, and precisely timed optoXR photostimulation in nucleus accumbens by itself sufficed to drive conditioned place preference in freely moving mice. The optoXR approach allows testing of hypotheses regarding the causal impact of biochemical signalling in behaving mammals, in a targetable and temporally precise manner.


Nature Methods | 2012

Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins

Joanna Mattis; Kay M. Tye; Emily A. Ferenczi; Charu Ramakrishnan; Daniel J. O’Shea; Rohit Prakash; Lisa A. Gunaydin; Minsuk Hyun; Lief E. Fenno; Viviana Gradinaru; Ofer Yizhar; Karl Deisseroth

Diverse optogenetic tools have allowed versatile control over neural activity. Many depolarizing and hyperpolarizing tools have now been developed in multiple laboratories and tested across different preparations, presenting opportunities but also making it difficult to draw direct comparisons. This challenge has been compounded by the dependence of performance on parameters such as vector, promoter, expression time, illumination, cell type and many other variables. As a result, it has become increasingly complicated for end users to select the optimal reagents for their experimental needs. For a rapidly growing field, critical figures of merit should be formalized both to establish a framework for further development and so that end users can readily understand how these standardized parameters translate into performance. Here we systematically compared microbial opsins under matched experimental conditions to extract essential principles and identify key parameters for the conduct, design and interpretation of experiments involving optogenetic techniques.


Nature | 2010

Global and local fMRI signals driven by neurons defined optogenetically by type and wiring

Jin Hyung Lee; Remy Durand; Viviana Gradinaru; Feng Zhang; Inbal Goshen; Dae-Shik Kim; Lief E. Fenno; Charu Ramakrishnan; Karl Deisseroth

Despite a rapidly-growing scientific and clinical brain imaging literature based on functional magnetic resonance imaging (fMRI) using blood oxygenation level-dependent (BOLD) signals, it remains controversial whether BOLD signals in a particular region can be caused by activation of local excitatory neurons. This difficult question is central to the interpretation and utility of BOLD, with major significance for fMRI studies in basic research and clinical applications. Using a novel integrated technology unifying optogenetic control of inputs with high-field fMRI signal readouts, we show here that specific stimulation of local CaMKIIα-expressing excitatory neurons, either in the neocortex or thalamus, elicits positive BOLD signals at the stimulus location with classical kinetics. We also show that optogenetic fMRI (ofMRI) allows visualization of the causal effects of specific cell types defined not only by genetic identity and cell body location, but also by axonal projection target. Finally, we show that ofMRI within the living and intact mammalian brain reveals BOLD signals in downstream targets distant from the stimulus, indicating that this approach can be used to map the global effects of controlling a local cell population. In this respect, unlike both conventional fMRI studies based on correlations and fMRI with electrical stimulation that will also directly drive afferent and nearby axons, this ofMRI approach provides causal information about the global circuits recruited by defined local neuronal activity patterns. Together these findings provide an empirical foundation for the widely-used fMRI BOLD signal, and the features of ofMRI define a potent tool that may be suitable for functional circuit analysis as well as global phenotyping of dysfunctional circuitry.


PLOS ONE | 2011

SNCA triplication Parkinson's patient's iPSC-derived DA neurons accumulate α-synuclein and are susceptible to oxidative stress.

Blake Byers; Branden Cord; Ha Nam Nguyen; Birgitt Schüle; Lief E. Fenno; Patrick C. Lee; Karl Deisseroth; J. William Langston; Renee A. Reijo Pera; Theo D. Palmer

Parkinsons disease (PD) is an incurable age-related neurodegenerative disorder affecting both the central and peripheral nervous systems. Although common, the etiology of PD remains poorly understood. Genetic studies infer that the disease results from a complex interaction between genetics and environment and there is growing evidence that PD may represent a constellation of diseases with overlapping yet distinct underlying mechanisms. Novel clinical approaches will require a better understanding of the mechanisms at work within an individual as well as methods to identify the specific array of mechanisms that have contributed to the disease. Induced pluripotent stem cell (iPSC) strategies provide an opportunity to directly study the affected neuronal subtypes in a given patient. Here we report the generation of iPSC-derived midbrain dopaminergic neurons from a patient with a triplication in the α-synuclein gene (SNCA). We observed that the iPSCs readily differentiated into functional neurons. Importantly, the PD-affected line exhibited disease-related phenotypes in culture: accumulation of α-synuclein, inherent overexpression of markers of oxidative stress, and sensitivity to peroxide induced oxidative stress. These findings show that the dominantly-acting PD mutation is intrinsically capable of perturbing normal cell function in culture and confirm that these features reflect, at least in part, a cell autonomous disease process that is independent of exposure to the entire complexity of the diseased brain.


Nature Methods | 2014

Targeting cells with single vectors using multiple-feature Boolean logic

Lief E. Fenno; Joanna Mattis; Charu Ramakrishnan; Minsuk Hyun; Seunghee Lee; Miao He; Jason Tucciarone; Aslihan Selimbeyoglu; Andre Berndt; Logan Grosenick; Kelly A. Zalocusky; Hannah Bernstein; H. Swanson; C. Perry; Ilka Diester; Frederick M. Boyce; Caroline E. Bass; Rachael L. Neve; Z. J. Huang; Karl Deisseroth

Precisely defining the roles of specific cell types is an intriguing frontier in the study of intact biological systems and has stimulated the rapid development of genetically encoded tools for observation and control. However, targeting these tools with adequate specificity remains challenging: most cell types are best defined by the intersection of two or more features such as active promoter elements, location and connectivity. Here we have combined engineered introns with specific recombinases to achieve expression of genetically encoded tools that is conditional upon multiple cell-type features, using Boolean logical operations all governed by a single versatile vector. We used this approach to target intersectionally specified populations of inhibitory interneurons in mammalian hippocampus and neurons of the ventral tegmental area defined by both genetic and wiring properties. This flexible and modular approach may expand the application of genetically encoded interventional and observational tools for intact-systems biology.


Nature Neuroscience | 2011

A new mode of corticothalamic transmission revealed in the Gria4(-/-) model of absence epilepsy.

Jeanne T. Paz; Astra S. Bryant; Kathy Peng; Lief E. Fenno; Ofer Yizhar; Wayne N. Frankel; Karl Deisseroth; John R. Huguenard

Cortico-thalamo-cortical circuits mediate sensation and generate neural network oscillations associated with slow-wave sleep and various epilepsies. Cortical input to sensory thalamus is thought to mainly evoke feed-forward synaptic inhibition of thalamocortical (TC) cells via reticular thalamic nucleus (nRT) neurons, especially during oscillations. This relies on a stronger synaptic strength in the cortico-nRT pathway than in the cortico-TC pathway, allowing the feed-forward inhibition of TC cells to overcome direct cortico-TC excitation. We found a systemic and specific reduction in strength in GluA4-deficient (Gria4−/−) mice of one excitatory synapse of the rhythmogenic cortico-thalamo-cortical system, the cortico-nRT projection, and observed that the oscillations could still be initiated by cortical inputs via the cortico-TC-nRT-TC pathway. These results reveal a previously unknown mode of cortico-thalamo-cortical transmission, bypassing direct cortico-nRT excitation, and describe a mechanism for pathological oscillation generation. This mode could be active under other circumstances, representing a previously unknown channel of cortico-thalamo-cortical information processing.

Collaboration


Dive into the Lief E. Fenno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ofer Yizhar

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Peter Hegemann

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Ofer Yizhar

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Matthias Prigge

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Feng Zhang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge