Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lien Lemmens is active.

Publication


Featured researches published by Lien Lemmens.


Journal of Food Science | 2010

Effect of thermal processing on the degradation, isomerization, and bioaccessibility of lycopene in tomato pulp.

Ines Colle; Lien Lemmens; Sandy Van Buggenhout; Ann Van Loey; Marc Hendrickx

Thermal processing affects the nutritional value of food products. The nutritional value is not only determined by the content but also by the bioaccessibility of nutrients. The present study was performed to gain detailed insight into the influence of thermal processing on the degradation, isomerization, and bioaccessibility of lycopene isomers in tomato pulp, without adding any other ingredient. The bioaccessibility, which is defined as the fraction of the nutrient that can be released from the food matrix, was measured using an in vitro method. The results demonstrated the rather high thermal stability of lycopene. Although a treatment at 140 °C induced isomerization, the contribution of cis-lycopene to the total lycopene content remained small. Results also confirmed that thermal processing as such can improve the in vitro bioaccessibility of lycopene in tomato pulp, but the improvement was only significant upon treatments at temperatures of 130 and 140 °C. At such intense process conditions, one should be aware of the negative effect on other quality and nutrient parameters. Possibilities of thermal processing as such to improve the nutritional value of tomato pulp (without the addition of other ingredients) thus looks rather limited.


Journal of Agricultural and Food Chemistry | 2010

Particle size reduction leading to cell wall rupture is more important for the β-carotene bioaccessibility of raw compared to thermally processed carrots.

Lien Lemmens; Sandy Van Buggenhout; Ann Van Loey; Marc Hendrickx

The amount of nutrients that can be released from food products (i.e., nutrient in vitro bioaccessibility) is often studied as it is a starting point for investigating nutrient bioavailability, an indicator for the nutritional value of food products. However, the importance of mastication as a particle size reduction technique is poorly understood and is often neglected during in vitro procedures determining bioaccessibility. Therefore, the aim of the present work was to study the effect of mechanical breakdown on the β-carotene bioaccessibility of carrot samples, having different textural/structural characteristics (as a result of thermal processing). In the first part of this study, the all-E-β-carotene bioaccessibility of carrot particles of different sizes (ranging from cell fragments up to large cell clusters), generated from raw as well as from gently and intensely cooked carrot samples, was determined. In the second part of the study, the effect of human mastication on the particle size reduction of raw as well as of gently and intensely cooked carrot samples was investigated in order to allow identification and validation of a technique that could mimic mastication during in vitro procedures. Results showed a strong dependency of the all-E-β-carotene bioaccessibility on the particle size for raw and gently cooked carrots. After intense cooking, on the other hand, a considerable amount of all-E-β-carotene could be released from cell fragments (smaller than a cell) as well as from small and large cell clusters. Hence, the importance of mechanical breakdown, and thus also of (in vitro) mastication, is dependent on the carrot sample that is considered (i.e., the extent to which the carrot sample has been thermally processed prior to the particle size reduction). Structural changes occurring during mechanical and thermal processing are hereby key factors determining the all-E-β-carotene bioaccessibility. The average particle size distribution curves of raw and cooked carrots, which were chewed by 15 persons, could be mimicked by mixing 50 g of carrots using a Grindomix (Retsch) at 2500 rpm during 5 s. Based on this scientific knowledge, the identified in vitro mastication technique was successfully integrated in the in vitro digestion procedure determining the all-E-β-carotene bioaccessibility of carrot samples.


Journal of Agricultural and Food Chemistry | 2012

Relation between particle size and carotenoid bioaccessibility in carrot- and tomato-derived suspensions.

Katlijn Moelants; Lien Lemmens; Marijke Vandebroeck; Sandy Van Buggenhout; Ann Van Loey; Marc Hendrickx

To study the effect of particle size on the relative all-E-β-carotene and all-E-lycopene bioaccessibility in carrot- and tomato-derived suspensions, respectively, an in vitro digestion approach including oil was used. Adding olive oil (2%) during digestion, especially as an oil-in-water emulsion, resulted in a substantial increase in carotenoid uptake in the micellar phase. Carotenoid bioaccessibility decreased with average particle size. Only particles smaller than an individual cell resulted in high bioaccessibility values, pointing out the importance of the cell wall as the main barrier for carotenoid uptake. The relation obtained between particle size and bioaccessibility was used to predict the carotenoid bioaccessibility in carrot- and tomato-derived purées. These predictions indicated that carotenoid bioaccessibility in plant-based food suspensions is not only determined by the cell wall integrity (related with particle size) but is also affected by interactions between the structural compounds of the complex food matrix.


Journal of Agricultural and Food Chemistry | 2010

β-Carotene Isomerization Kinetics during Thermal Treatments of Carrot Puree

Lien Lemmens; Kristel De Vleeschouwer; Katlijn Moelants; Ines Colle; Ann Van Loey; Marc Hendrickx

The effect of thermal processing on the stability of beta-carotene in carrot puree was investigated in a broad temperature range (80-150 degrees C). Heat induced changes in the stability of beta-carotene resulting in the conversion into its cis-isomers until an equilibrium state was reached after prolonged heating. By using nonlinear one-step regression analysis, the overall isomerization of all-trans-beta-carotene and the formation of individual cis-isomers could be modeled with a fractional conversion model. The Arrhenius equation was used to describe the temperature dependence of the reaction rate constants. As indicated by the low activation energies for all compounds (11 kJ mol(-1)), the isomerization rate constants showed little sensitivity toward the treatment temperature. The temperature dependence of the equilibrium concentration values after prolonged heating (C(f)) varied for the different compounds, but in all cases, a linear relation between the C(f) values and the treatment temperature could be noted. Although isomerization was observed as a result of thermal processing, it could be concluded that during industrially relevant heating processes, the retention of all-trans-beta-carotene in plain carrot puree was relatively high, which is most likely due to the presence of the protecting food matrix.


Journal of Agricultural and Food Chemistry | 2012

Carrot β-Carotene Degradation and Isomerization Kinetics during Thermal Processing in the Presence of Oil

Griet Knockaert; Sudheer K. Pulissery; Lien Lemmens; Sandy Van Buggenhout; Marc Hendrickx; Ann Van Loey

The effect of thermal processing (85-130 °C) on the stability and isomerization of β-carotene in both an olive oil/carrot emulsion and an olive oil phase enriched with carrot β-carotene was studied. During processing, degradation of total β-carotene took place. Initially, total β-carotene concentration decreased quickly, after which a plateau value was reached, which was dependent on the applied temperature. In the oil/carrot emulsion, the total β-carotene concentration could be modeled by a fractional conversion model. The temperature dependence of the degradation rate constants was described by the activation energy and was estimated to be 45.0 kJ/mol. In the enriched oil phase, less degradation took place and the results could not be modeled. Besides degradation, β-carotene isomerization was studied. In both matrices, a fractional conversion model could be used to model total isomerization and formation of 13-Z- and 15-Z-β-carotene. β-Carotene isomerization was similar in both the oil/carrot emulsion and enriched oil phase as the simultaneously estimated kinetic parameters (isomerization reaction rate constant and activation energy) of both matrices did not differ significantly. The activation energies of isomerization were estimated to be 70.5 and 75.0 kJ/mol in the oil/carrot emulsion and enriched oil phase, respectively.


Journal of Agricultural and Food Chemistry | 2010

Lycopene Degradation and Isomerization Kinetics during Thermal Processing of an Olive Oil/Tomato Emulsion

Ines Colle; Lien Lemmens; Getachew N. Tolesa; Sandy Van Buggenhout; Kristel De Vleeschouwer; Ann Van Loey; Marc Hendrickx

The stability of lycopene in an olive oil/tomato emulsion during thermal processing (80-140 °C) was studied. Initially, the degradation of total lycopene (all-E plus Z-forms) occurred quickly at temperatures above 100 °C. However, a nonzero plateau value, depending on the processing temperature, was attained after longer treatment times. Besides degradation, the isomerization of total-Z-lycopene as well as the individual isomerization of all-E-, 5-Z-, 9-Z-, and 13-Z-lycopene was studied in detail. After prolonged heating, the isomer conversion reached a temperature-dependent equilibrium state. The degradation of total lycopene and the isomerization could be described by a fractional conversion model. The temperature dependency of the corresponding reaction rate constants was quantified by the Arrhenius equation. The activation energy of degradation was estimated to be 28 kJ/mol, and the activation energy of overall (all-E and total-Z) isomerization was estimated to be 52 kJ/mol.


Food Chemistry | 2015

Colour and carotenoid changes of pasteurised orange juice during storage.

Scheling Wibowo; Liesbeth Vervoort; Jovana Tomic; Jihan Santanina Santiago; Lien Lemmens; Agnese Panozzo; Tara Grauwet; Marc Hendrickx; Ann Van Loey

The correlation of carotenoid changes with colour degradation of pasteurised single strength orange juice was investigated at 20, 28, 35 and 42°C for a total of 32 weeks of storage. Changes in colour were assessed using the CIELAB system and were kinetically described by a zero-order model. L(∗), a(∗), b(∗), ΔE(∗), Cab(∗) and hab were significantly changed during storage (p<0.05). Activation energies for all colour parameters were 64-73 kJ mol(-1). Several carotenoids showed important changes and appeared to have different susceptibilities to storage. A decrease of β-cryptoxanthin was observed at higher temperatures, whereas antheraxanthin started to decrease at lower temperatures. Depending on the time and temperature, changes in carotenoids could be due to isomerisation reactions, which may lead to a perceptible colour change. Although the contribution of carotenoids was recognised to some extent, other reactions seem of major importance for colour degradation of orange juice during storage.


Food Chemistry | 2013

Novel targeted approach to better understand how natural structural barriers govern carotenoid in vitro bioaccessibility in vegetable-based systems

Paola Palmero; Lien Lemmens; Albert Ribas-Agustí; Carola Sosa; Kristof Met; Jean de Dieu Umutoni; Marc Hendrickx; Ann Van Loey

An experimental approach, allowing us to understand the effect of natural structural barriers (cell walls, chromoplast substructures) on carotenoid bioaccessibility, was developed. Different fractions with different levels of carotenoid bio-encapsulation (carotenoid-enriched oil, chromoplasts, small cell clusters, and large cell clusters) were isolated from different types of carrots and tomatoes. An in vitro method was used to determine carotenoid bioaccessibility. In the present work, a significant decrease in carotenoid in vitro bioaccessibility could be observed with an increasing level of bio-encapsulation. Differences in cell wall material and chromoplast substructure between matrices influenced carotenoid release and inclusion in micelles. For carrots, cell walls and chromoplast substructure were important barriers for carotenoid bioaccessibility while, in tomatoes, the chromoplast substructure represented the most important barrier governing bioaccessibility. The highest increase in carotenoid bioaccessibility, for all matrices, was obtained after transferring carotenoids into the oil phase, a system lacking cell walls and chromoplast substructures that could hamper carotenoid release.


Food Chemistry | 2013

Microstructure and bioaccessibility of different carotenoid species as affected by high pressure homogenisation: a case study on differently coloured tomatoes.

Agnese Panozzo; Lien Lemmens; Ann Van Loey; Lara Manzocco; Maria Cristina Nicoli; Marc Hendrickx

The effect of high pressure homogenisation (HPH) on structure (Bostwick consistency, particle size distribution and microstructure) and carotenoid in vitro bioaccessibility of different tomato pulps was investigated. HPH decreased tomato particle size due to matrix disruption and increased product consistency, probably due to the formation of a fibre network. Homogenisation also resulted in a decrease of in vitro bioaccessibility of lycopene, ζ-carotene, and lutein. Such decrease was attributed to the structuring effect of HPH. An inverse relation between tomato consistency and carotenoid in vitro bioaccessibility was found. This dependency was affected by carotenoid species and its localisation within the matrix. It could be observed that one matrix (e.g. (homogenised) red tomato pulp) can contain carotenoids with a very low bioaccessibility (lycopene) as well as carotenoids with a very high bioaccessibility (lutein), indicating that carotenoid bioaccessibility is not solely dependent on the matrix.


Food Chemistry | 2014

Role of carotenoid type on the effect of thermal processing on bioaccessibility

Paola Palmero; Lien Lemmens; Marc Hendrickx; Ann Van Loey

Cell walls and chromoplast substructures constitute natural structural barriers governing carotenoid bioaccessibility. In order to enhance carotenoid bioaccessibility, thermal processes were applied to fractions surrounded by different levels of structural barriers. The matrices studied were orange carrots, red carrots, red tomatoes and atomic red carrots. In the case of carrots, no effect of thermal treatments on carotenoid bioaccessibility at the chromoplast level was obtained. However, in the case of tomatoes, lycopene bioaccessibility decreased upon thermal processing of chromoplasts. At the cell cluster level, low intensities of thermal processing resulted in a decrease of β-carotene and lycopene bioaccessibility. Nonetheless, at high intensities of thermal processing, only β-carotene bioaccessibility was increased. This observation was confirmed by the results obtained in the matrix rich in both types of carotenoids (atomic red carrots). It was therefore suggested, that the type of carotenoid constitutes an important factor determining the effect of thermal processing on their bioaccessibility.

Collaboration


Dive into the Lien Lemmens's collaboration.

Top Co-Authors

Avatar

Ann Van Loey

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Sandy Van Buggenhout

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Marc Hendrickx

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Ines Colle

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Marc Hendrickx

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Griet Knockaert

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Paola Palmero

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Katlijn Moelants

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Liesbeth Vervoort

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Agnese Panozzo

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge