Liesbeth Allais
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Liesbeth Allais.
The EMBO Journal | 2015
Jens Van Praet; Erin Donovan; Inge Vanassche; Michael Drennan; Fien Windels; Amélie Dendooven; Liesbeth Allais; Claude Cuvelier; Fons A. J. van de Loo; Paula S. Norris; Andrey A. Kruglov; Sergei A. Nedospasov; Raul Y. Tito; Jeroen Raes; Valérie Gaboriau-Routhiau; Nadine Cerf-Bensussan; Tom Van de Wiele; Gérard Eberl; Carl F. Ware; Dirk Elewaut
Antinuclear antibodies are a hallmark feature of generalized autoimmune diseases, including systemic lupus erythematosus and systemic sclerosis. However, the processes underlying the loss of tolerance against nuclear self‐constituents remain largely unresolved. Using mice deficient in lymphotoxin and Hox11, we report that approximately 25% of mice lacking secondary lymphoid organs spontaneously develop specific antinuclear antibodies. Interestingly, we find this phenotype is not caused by a defect in central tolerance. Rather, cell‐specific deletion and in vivo lymphotoxin blockade link these systemic autoimmune responses to the formation of gut‐associated lymphoid tissue in the neonatal period of life. We further demonstrate antinuclear antibody production is influenced by the presence of commensal gut flora, in particular increased colonization with segmented filamentous bacteria, and IL‐17 receptor signaling. Together, these data indicate that neonatal colonization of gut microbiota influences generalized autoimmunity in adult life.
Journal of Controlled Release | 2013
Rebecca De Smet; Tine Demoor; Stephanie Verschuere; Melissa Dullaers; Gary R. Ostroff; Georges Leclercq; Liesbeth Allais; Charles Pilette; Marijke Dierendonck; Bruno G. De Geest; Claude Cuvelier
Continuously improving the developmental process and the efficacy of oral vaccines is essential in the fight against intestinal pathogens. A promising strategy for vaccination applying safe, biodegradable and non-replicating antigen delivery systems has gained increased interest for eliciting cellular and humoral immune responses. The current study evaluates the potential of β-glucan particles (GP) as an oral antigen delivery system and their adjuvant characteristics. GP are efficiently internalized by human intestinal epithelial cell lines (Caco-2 and HT-29 cells), without exerting negative effects on cell viability. GP triggered the expression of pro-inflammatory cytokines IL-23p19, IL-8 and the β-glucan receptors dectin-1 and TLR2 by activated Caco-2 cells, and CCL20 in HT-29 cells. In contrast, the expression level of TGF-β, an important mediator of oral tolerance, was significantly downregulated in HT-29 cells. Additionally, adoptive transfer experiments showed proliferating ovalbumin (OVA)-specific CD4(+) T cells mainly in the spleens of GP-OVA-fed mice. Furthermore, we detected a significantly increased IL-17 and a trend towards increased IFN-γ production in the spleen of GP-OVA-fed mice upon antigen restimulation. Oral administration of GP-OVA induced increased OVA-specific IgA, secretory-IgA (S-IgA) and secretory component (SC) production in intestinal fluids. Our data show that GP vehicles are able to deliver OVA via an oral route allowing efficient antigen presentation alongside adaptive immune activation, resulting in a Th17-biased response and the production of OVA-specific IgA, secretory-IgA and secretory component antibodies.
Environmental Microbiology | 2016
Liesbeth Allais; Frederiek-Maarten Kerckhof; Stephanie Verschuere; Ken R. Bracke; Rebecca De Smet; Debby Laukens; Pieter Van den Abbeele; Martine De Vos; Nico Boon; Guy Brusselle; Claude Cuvelier; Tom Van de Wiele
Inflammatory bowel diseases (IBD) are complex multifactorial diseases characterized by an inappropriate host response to an altered commensal microbiome and dysfunctional mucus barrier. Cigarette smoking is the best known environmental risk factor in IBD. Here, we studied the influence of chronic smoke exposure on the gut microbiome, mucus layer composition and immune factors in conventional mice. We compared smoke-exposed with air-exposed mice (n = 12) after a smoke exposure of 24 weeks. Both Illumina sequencing (n = 6) and denaturing gradient gel electrophoresis (n = 12) showed that bacterial activity and community structure were significantly altered in the colon due to smoke exposure. Interestingly, an increase of Lachnospiraceae sp. activity in the colon was observed. Also, the mRNA expression of Muc2 and Muc3 increased in the ileum, whereas Muc4 increased in the distal colon of smoke-exposed mice (n = 6). Furthermore, we observed increased Cxcl2 and decreased Ifn-γ in the ileum, and increased Il-6 and decreased Tgf-β in the proximal colon. Tight junction gene expression remained unchanged. We infer that the modulating role of chronic smoke exposure as a latently present risk factor in the gut may be driven by the altered epithelial mucus profiles and changes in microbiome composition and immune factors.
Journal of Crohns & Colitis | 2012
Stephanie Verschuere; Rebecca De Smet; Liesbeth Allais; Claude Cuvelier
Epidemiological evidence demonstrates that smoking is the most important environmental risk factor in Crohns disease while it positively interferes with the disease course of ulcerative colitis. However, the underlying mechanisms through which smoking exerts this divergent effect and affects pathogenesis of inflammatory bowel disease are largely unknown. Animal smoke models are good models to investigate the impact of cigarette smoke on intestinal physiology and inflammation. They enable one to explore the interaction of smoke components and the gut on cellular and molecular level, clarifying how smoking interferes with normal gut function and with disease course in inflammatory conditions. This review describes the currently used animal models for studying the impact of cigarette smoke on the intestinal tract. We first discuss the different methods for simulation of smoking. Furthermore, we focus on the effect of smoke exposure on normal gut physiology and immunology, on experimental (entero)colitis, and on inflammation-induced neoplasia. Based on this current knowledge, a hypothesis is formulated about the mechanisms through which cigarette smoke interferes with the gut in normal and pathological conditions.
Histochemistry and Cell Biology | 2012
Stephanie Verschuere; Liesbeth Allais; Ken R. Bracke; Saskia Lippens; Rebecca De Smet; Peter Vandenabeele; Guy Brusselle; Claude Cuvelier
Cigarette smoke (CS) exposure is associated with increased autophagy in several cell types, such as bronchial epithelial cells. Smoking is also an environmental risk factor in Crohn’s disease, in which impairment of the autophagy-mediated anti-bacterial pathway has been implicated. So far, it is unknown whether CS induces autophagy in the gut. Here, we examined the effect of chronic CS exposure on autophagy in the follicle-associated epithelium (FAE) of murine Peyer’s patches. Transmission electron microscopy revealed that the proportion of cell area occupied by autophagic vesicles significantly increased in the FAE after CS exposure. An increased number of autophagic vesicles was observed in the FAE, whereas the vesicle size remained unaltered. Besides enterocytes, also M-cells contain more autophagic vesicles upon CS exposure. In addition, the mRNA level of the autophagy-related protein Atg7 in the underlying Peyer’s patches is increased after CS exposure, which indicates that the autophagy-inducing effect of CS is not limited to the FAE. In conclusion, our results demonstrate that CS exposure induces autophagy in murine FAE and in the underlying immune cells of Peyer’s patches, suggesting that CS exposure increases the risk for Crohn’s disease by causing epithelial oxidative damage, which needs to be repaired by autophagy.
Biomacromolecules | 2014
Rebecca De Smet; Stephanie Verschuere; Liesbeth Allais; Georges Leclercq; Marijke Dierendonck; Bruno G. De Geest; Isabel Van Driessche; Tine Demoor; Claude Cuvelier
During the past decade, extensive research has undeniably improved the formulation and delivery of oral vaccines. Nevertheless, several factors, such as the harsh gastrointestinal environment together with tolerance induction to exogenous antigens, have thus far impeded the optimal effectiveness and clinical application of oral delivery systems. The current study encompasses an initial evaluation of the stability, biocompatibility, and cellular uptake of two promising candidate systems for oral antigen delivery, that is, calcium carbonate- (CP) and mannitol-templated (MP) porous microspheres. Both spray-dried formulations were efficiently internalized by human intestinal epithelial cells (Caco-2 and HT-29) and degraded into phagolysosomal intracellular compartments. In addition, cellular particle uptake and processing significantly up-regulated the expression of (HLA) class-II and costimulatory molecules on intestinal epithelial cells. Even though the high surface-area-to-volume ratio of the microspheres was expected to favor protease access, antigen release was remarkably limited in simulated intestinal fluid and was even absent under gastric conditions. Finally, neither CP nor MP exerted cytotoxicity upon prolonged in vitro incubation with high antigen concentration. Altogether, these data support the potential of CP and MP for oral antigen delivery and motivate the further development of these promising carrier systems in in vivo studies.
Human Vaccines & Immunotherapeutics | 2014
Rebecca De Smet; Liesbeth Allais; Claude Cuvelier
Oral vaccination is the most challenging vaccination method due to the administration route. However, oral vaccination has socio-economic benefits and provides the possibility of stimulating both humoral and cellular immune responses at systemic and mucosal sites. Despite the advantages of oral vaccination, only a limited number of oral vaccines are currently approved for human use. During the last decade, extensive research regarding antigen-based oral vaccination methods have improved immunogenicity and induced desired immunological outcomes. Nevertheless, several factors such as the harsh gastro-intestinal environment and oral tolerance impede the clinical application of oral delivery systems. To date, human clinical trials investigating the efficacy of these systems are still lacking. This review addresses the rationale and key biological and physicochemical aspects of oral vaccine design and highlights the use of yeast-derived β-glucan microparticles as an oral vaccine delivery platform.
Pathobiology | 2017
Liesbeth Allais; Rebecca De Smet; Stephanie Verschuere; Karel Talavera; Claude Cuvelier; Tania Maes
Inflammatory bowel disease (IBD) is characterized by severe gastrointestinal inflammation and results from a complex interplay between genetic and environmental factors. IBD includes two prominent subtypes: Crohns disease (CD) and ulcerative colitis (UC). One of the main risk factors for the development of CD is cigarette smoking, while UC is rather a disease of ex-smokers. To date, many of the mechanisms underlying the immune imbalance in IBD and the involvement of cigarette smoke (CS) are incompletely understood. Transient receptor potential (TRP) proteins are non-selective cation channels that, upon activation, lead to plasma membrane depolarization and, in general, to Ca2+ influx. TRP channels of the ankyrin and vanilloid family, expressed by sensory neurons in the central and enteric nervous systems, have been extensively studied in the context of intestinal inflammation. Moreover, recent advances made on the role of non-neuronal expressed TRP channels shed light on the involvement of epithelial cells in inflammatory processes. This review focuses on how CS may impact TRP channel function in intestinal inflammation. Firstly, we discuss the current knowledge on neuronal TRP channels, known to be linked to IBD, in health, immune homeostasis and intestinal inflammation. Subsequently, we address how TRP channels are activated by CS and its components in other organ systems and also hypothesize on the potential implications for CS-mediated TRP channel activation in gut inflammation.
PLOS ONE | 2015
Liesbeth Allais; Smitha Kumar; Karlijn Debusschere; Stephanie Verschuere; Tania Maes; Rebecca De Smet; Griet Conickx; Martine De Vos; Debby Laukens; Guy Joos; Guy Brusselle; Dirk Elewaut; Claude Cuvelier; Ken R. Bracke
The inflammatory cytokine TNF-α is a central mediator in many immune-mediated diseases, such as Crohn’s disease (CD), spondyloarthritis (SpA) and chronic obstructive pulmonary disease (COPD). Epidemiologic studies have shown that cigarette smoking (CS) is a prominent common risk factor in these TNF-dependent diseases. We exposed TNFΔARE mice; in which a systemic TNF-α overexpression leads to the development of inflammation; to 2 or 4 weeks of air or CS. We investigated the effect of deregulated TNF expression on CS-induced pulmonary inflammation and the effect of CS exposure on the initiation and progression of gut and joint inflammation. Upon 2 weeks of CS exposure, inflammation in lungs of TNFΔARE mice was significantly aggravated. However, upon 4 weeks of CS-exposure, this aggravation was no longer observed. TNFΔARE mice have no increases in CD4+ and CD8+ T cells and a diminished neutrophil response in the lungs after 4 weeks of CS exposure. In the gut and joints of TNFΔARE mice, 2 or 4 weeks of CS exposure did not modulate the development of inflammation. In conclusion, CS exposure does not modulate gut and joint inflammation in TNFΔARE mice. The lung responses towards CS in TNFΔARE mice however depend on the duration of CS exposure.
Journal of Crohns & Colitis | 2013
Liesbeth Allais; Frederiek Maarten Kerckhof; Stephanie Verschuere; Ken R. Bracke; R. De Smet; Debby Laukens; M. Devos; Nico Boon; Guy Brusselle; T. Van de Wiele; Claude Cuvelier
Background The microbiome plays a crucial role in maintaining intestinal homeostasis. Disruption of this homeostatic environment leads to destabilisation of the gut immune system and aberrant immune responses against harmless microbiota, which may be involved in the development of Crohn’s disease (CD). The most prominent environmental risk factor for CD is smoking. Therefore, the present study aims to investigate the influence of cigarette smoke on the microbiome, in particular the mucosaadherent microbiota, and how this is linked to changes in mucin production.