Lieve Coenegrachts
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lieve Coenegrachts.
Cell | 2010
Sara Van de Veire; Ingeborg Stalmans; Femke Heindryckx; Hajimu Oura; Annemilai Tijeras-Raballand; Thomas Schmidt; Sonja Loges; Imke Albrecht; Bart Jonckx; Stefan Vinckier; Christophe Van Steenkiste; Sònia Tugues; Charlotte Rolny; Maria De Mol; Daniela Dettori; Patricia Hainaud; Lieve Coenegrachts; Jean Olivier Contreres; Tine Van Bergen; Henar Cuervo; Wei Hong Xiao; Carole Le Henaff; Ian Buysschaert; Behzad Kharabi Masouleh; Anja Geerts; Tibor Schomber; Philippe Bonnin; Vincent Lambert; Jurgen Haustraete; Serena Zacchigna
Our findings that PlGF is a cancer target and anti-PlGF is useful for anticancer treatment have been challenged by Bais et al. Here we take advantage of carcinogen-induced and transgenic tumor models as well as ocular neovascularization to report further evidence in support of our original findings of PlGF as a promising target for anticancer therapies. We present evidence for the efficacy of additional anti-PlGF antibodies and their ability to phenocopy genetic deficiency or silencing of PlGF in cancer and ocular disease but also show that not all anti-PlGF antibodies are effective. We also provide additional evidence for the specificity of our anti-PlGF antibody and experiments to suggest that anti-PlGF treatment will not be effective for all tumors and why. Further, we show that PlGF blockage inhibits vessel abnormalization rather than density in certain tumors while enhancing VEGF-targeted inhibition in ocular disease. Our findings warrant further testing of anti-PlGF therapies.
The EMBO Journal | 2010
Christa Maes; Steven Goossens; Sonia Bartunkova; Benjamin Drogat; Lieve Coenegrachts; Ingrid Stockmans; Karen Moermans; Omar Nyabi; Katharina Haigh; Michael Naessens; Lieven Haenebalcke; Jan Tuckermann; Marc Tjwa; Peter Carmeliet; Vice Mandic; Jean-Pierre David; Axel Behrens; Andras Nagy; Geert Carmeliet; Jody J. Haigh
Vascular endothelial growth factor (VEGF) and β‐catenin both act broadly in embryogenesis and adulthood, including in the skeletal and vascular systems. Increased or deregulated activity of these molecules has been linked to cancer and bone‐related pathologies. By using novel mouse models to locally increase VEGF levels in the skeleton, we found that embryonic VEGF over‐expression in osteo‐chondroprogenitors and their progeny largely pheno‐copied constitutive β‐catenin activation. Adult induction of VEGF in these cell populations dramatically increased bone mass, associated with aberrant vascularization, bone marrow fibrosis and haematological anomalies. Genetic and pharmacological interventions showed that VEGF increased bone mass through a VEGF receptor 2‐ and phosphatidyl inositol 3‐kinase‐mediated pathway inducing β‐catenin transcriptional activity in endothelial and osteoblastic cells, likely through modulation of glycogen synthase kinase 3‐β phosphorylation. These insights into the actions of VEGF in the bone and marrow environment underscore its power as pleiotropic bone anabolic agent but also warn for caution in its therapeutic use. Moreover, the finding that VEGF can modulate β‐catenin activity may have widespread physiological and clinical ramifications.
Journal of Clinical Investigation | 2006
Christa Maes; Lieve Coenegrachts; Ingrid Stockmans; Evis Daci; Aernout Luttun; Anna Petryk; Rajaram Gopalakrishnan; Karen Moermans; Nico Smets; Catherine M. Verfaillie; Peter Carmeliet; Roger Bouillon; Geert Carmeliet
Current therapies for delayed- or nonunion bone fractures are still largely ineffective. Previous studies indicated that the VEGF homolog placental growth factor (PlGF) has a more significant role in disease than in health. Therefore we investigated the role of PlGF in a model of semi-stabilized bone fracture healing. Fracture repair in mice lacking PlGF was impaired and characterized by a massive accumulation of cartilage in the callus, reminiscent of delayed- or nonunion fractures. PlGF was required for the early recruitment of inflammatory cells and the vascularization of the fracture wound. Interestingly, however, PlGF also played a role in the subsequent stages of the repair process. Indeed in vivo and in vitro findings indicated that PlGF induced the proliferation and osteogenic differentiation of mesenchymal progenitors and stimulated cartilage turnover by particular MMPs. Later in the process, PlGF was required for the remodeling of the newly formed bone by stimulating osteoclast differentiation. As PlGF expression was increased throughout the process of bone repair and all the important cell types involved expressed its receptor VEGFR-1, the present data suggest that PlGF is required for mediating and coordinating the key aspects of fracture repair. Therefore PlGF may potentially offer therapeutic advantages for fracture repair.
Gynecologic Oncology | 2013
Diego A. Garcia-Dios; Diether Lambrechts; Lieve Coenegrachts; Ingrid Vandenput; An Capoen; Penelope M. Webb; Kaltin Ferguson; Anecs; Lars A. Akslen; Bart Claes; Ignace Vergote; Philippe Moerman; Johan Van Robays; Janusz Marcickiewicz; Helga B. Salvesen; Amanda B. Spurdle; Frédéric Amant
OBJECTIVE Endometrial cancer patients may benefit from systemic adjuvant chemotherapy, alone or in combination with targeted therapies. Prognostic and predictive markers are needed, however, to identify patients amenable for these therapies. METHODS Primary endometrial tumors were genotyped for >100 hot spot mutations in genes potentially acting as prognostic or predictive markers. Mutations were correlated with tumor characteristics in a discovery cohort, replicated in independent cohorts and finally, confirmed in the overall population (n=1063). RESULTS PIK3CA, PTEN and KRAS mutations were most frequently detected, respectively in 172 (16.2%), 164 (15.4%) and 161 (15.1%) tumors. Binary logistic regression revealed that PIK3CA mutations were more common in high-grade tumors (OR=2.03; P=0.001 for grade 2 and OR=1.89; P=0.012 for grade 3 compared to grade 1), whereas a positive TP53 status correlated with type II tumors (OR=11.92; P<0.001) and PTEN mutations with type I tumors (OR=19.58; P=0.003). Conversely, FBXW7 mutations correlated with positive lymph nodes (OR=3.38; P=0.045). When assessing the effects of individual hot spot mutations, the H1047R mutation in PIK3CA correlated with high tumor grade and reduced relapse-free survival (HR=2.18; P=0.028). CONCLUSIONS Mutations in PIK3CA, TP53, PTEN and FBXW7 correlate with high tumor grade, endometrial cancer type and lymph node status, whereas PIK3CA H1047R mutations serve as prognostic markers for relapse-free survival in endometrial cancer patients.
Cancer Research | 2010
Lieve Coenegrachts; Christa Maes; Sophie Torrekens; Riet Van Looveren; Massimiliano Mazzone; Theresa A. Guise; Roger Bouillon; Jean Marie Stassen; Peter Carmeliet; Geert Carmeliet
Treatment of bone metastases is largely symptomatic and is still an unmet medical need. Current therapies mainly target the late phase of tumor-induced osteoclast activation and hereby inhibit further metastatic growth. This treatment method is, however, less effective in preventing initial tumor engraftment, a process that is supposed to depend on the bone microenvironment. We explored whether bone-derived placental growth factor (PlGF), a homologue of vascular endothelial growth factor-A, regulates osteolytic metastasis. Osteogenic cells secrete PlGF, the expression of which is enhanced by bone-metastasizing breast tumor cells. Selective neutralization of host-derived PlGF by anti-mouse PlGF (alphaPlGF) reduced the incidence, number, and size of bone metastases, and preserved bone mass. alphaPlGF did not affect metastatic tumor angiogenesis but inhibited osteoclast formation by preventing the upregulation of the osteoclastogenic cytokine receptor activator of NF-kappaB ligand in osteogenic cells, as well as by blocking the autocrine osteoclastogenic activity of PlGF. alphaPlGF also reduced the engraftment of tumor cells in the bone and inhibited their interaction with matrix components in the metastatic niche. alphaPlGF therefore inhibits not only the progression of metastasis but also the settlement of tumor in the bone. These findings identify novel properties of PlGF and suggest that alphaPlGF might offer opportunities for adjuvant therapy of bone metastasis.
Molecular Cancer | 2014
Lorena Alonso-Alconada; Laura Muinelo-Romay; Kadri Madissoo; Antonio Díaz-López; Camilla Krakstad; Jone Trovik; Elisabeth Wik; Dharani Hapangama; Lieve Coenegrachts; Amparo Cano; Luis Chiva; Juan Cueva; María Vieito; Eugenia Ortega; Javier Mariscal; Eva Colas; Josep Castellví; Maite Cusido; Xavier Dolcet; Hans W. Nijman; Tjalling Bosse; John Green; Andrea Romano; Jaume Reventós; Rafael Lopez-Lopez; Helga B. Salvesen; Frédéric Amant; Xavier Matias-Guiu; Gema Moreno-Bueno; Miguel Abal
BackgroundAbout 20% of patients diagnosed with endometrial cancer (EC) are considered high-risk with unfavorable prognosis. In the framework of the European Network for Individualized Treatment in EC (ENITEC), we investigated the presence and phenotypic features of Circulating Tumor Cells (CTC) in high-risk EC patients.MethodsCTC isolation was carried out in peripheral blood samples from 34 patients, ranging from Grade 3 Stage IB to Stage IV carcinomas and recurrences, and 27 healthy controls using two methodologies. Samples were subjected to EpCAM-based immunoisolation using the CELLection™ Epithelial Enrich kit (Invitrogen, Dynal) followed by RTqPCR analysis. The phenotypic determinants of endometrial CTC in terms of pathogenesis, hormone receptor pathways, stem cell markers and epithelial to mesenchymal transition (EMT) drivers were asked. Kruskal-Wallis analysis followed by Dunn’s post-test was used for comparisons between groups. Statistical significance was set at p < 0.05.ResultsEpCAM-based immunoisolation positively detected CTC in high-risk endometrial cancer patients. CTC characterization indicated a remarkable plasticity phenotype defined by the expression of the EMT markers ETV5, NOTCH1, SNAI1, TGFB1, ZEB1 and ZEB2. In addition, the expression of ALDH and CD44 pointed to an association with stemness, while the expression of CTNNB1, STS, GDF15, RELA, RUNX1, BRAF and PIK3CA suggested potential therapeutic targets. We further recapitulated the EMT phenotype found in endometrial CTC through the up-regulation of ETV5 in an EC cell line, and validated in an animal model of systemic dissemination the propensity of these CTC in the accomplishment of metastasis.ConclusionsOur results associate the presence of CTC with high-risk EC. Gene-expression profiling characterized a CTC-plasticity phenotype with stemness and EMT features. We finally recapitulated this CTC-phenotype by over-expressing ETV5 in the EC cell line Hec1A and demonstrated an advantage in the promotion of metastasis in an in vivo mouse model of CTC dissemination and homing.
Cancer Epidemiology, Biomarkers & Prevention | 2012
Jirong Long; Wei Zheng; Yong-Bing Xiang; Felicity Lose; Deborah Thompson; Ian Tomlinson; Herbert Yu; Nicolas Wentzensen; Diether Lambrechts; Thilo Dörk; Natalia Dubrowinskaja; Marc T. Goodman; Helga B. Salvesen; Peter A. Fasching; Rodney J. Scott; Ryan J. Delahanty; Ying Zheng; Tracy O'Mara; Catherine S. Healey; Shirley Hodgson; Harvey A. Risch; Hannah P. Yang; Frédéric Amant; Nurzhan Turmanov; Anita Schwake; Galina Lurie; Jone Trovik; Matthias W. Beckmann; Katie A. Ashton; Bu-Tian Ji
Background: Genome-wide association studies (GWAS) have identified more than 100 genetic loci for various cancers. However, only one is for endometrial cancer. Methods: We conducted a three-stage GWAS including 8,492 endometrial cancer cases and 16,596 controls. After analyzing 585,963 single-nucleotide polymorphisms (SNP) in 832 cases and 2,682 controls (stage I) from the Shanghai Endometrial Cancer Genetics Study, we selected the top 106 SNPs for in silico replication among 1,265 cases and 5,190 controls from the Australian/British Endometrial Cancer GWAS (stage II). Nine SNPs showed results consistent in direction with stage I with P < 0.1. These nine SNPs were investigated among 459 cases and 558 controls (stage IIIa) and six SNPs showed a direction of association consistent with stages I and II. These six SNPs, plus two additional SNPs selected on the basis of linkage disequilibrium and P values in stage II, were investigated among 5,936 cases and 8,166 controls from an additional 11 studies (stage IIIb). Results: SNP rs1202524, near the CAPN9 gene on chromosome 1q42.2, showed a consistent association with endometrial cancer risk across all three stages, with ORs of 1.09 [95% confidence interval (CI), 1.03–1.16] for the A/G genotype and 1.17 (95% CI, 1.05–1.30) for the G/G genotype (P = 1.6 × 10−4 in combined analyses of all samples). The association was stronger when limited to the endometrioid subtype, with ORs (95% CI) of 1.11 (1.04–1.18) and 1.21 (1.08–1.35), respectively (P = 2.4 × 10−5). Conclusions: Chromosome 1q42.2 may host an endometrial cancer susceptibility locus. Impact: This study identified a potential genetic locus for endometrial cancer risk. Cancer Epidemiol Biomarkers Prev; 21(6); 980–7. ©2012 AACR.
eLife | 2014
Hui Zhao; Bernard Thienpont; Betül Yesilyurt; Matthieu Moisse; Joke Reumers; Lieve Coenegrachts; Xavier Sagaert; Stefanie Schrauwen; Dominiek Smeets; Gert Matthijs; Stein Aerts; Jan Cools; Alex Metcalf; Amanda B. Spurdle; Anecs; Frédéric Amant; Diether Lambrechts
DNA replication errors that persist as mismatch mutations make up the molecular fingerprint of mismatch repair (MMR)-deficient tumors and convey them with resistance to standard therapy. Using whole-genome and whole-exome sequencing, we here confirm an MMR-deficient mutation signature that is distinct from other tumor genomes, but surprisingly similar to germ-line DNA, indicating that a substantial fraction of human genetic variation arises through mutations escaping MMR. Moreover, we identify a large set of recurrent indels that may serve to detect microsatellite instability (MSI). Indeed, using endometrial tumors with immunohistochemically proven MMR deficiency, we optimize a novel marker set capable of detecting MSI and show it to have greater specificity and selectivity than standard MSI tests. Additionally, we show that recurrent indels are enriched for the ‘DNA double-strand break repair by homologous recombination’ pathway. Consequently, DSB repair is reduced in MMR-deficient tumors, triggering a dose-dependent sensitivity of MMR-deficient tumor cultures to DSB inducers. DOI: http://dx.doi.org/10.7554/eLife.02725.001
Gynecologic Oncology | 2015
Jeroen Depreeuw; Els Hermans; Stefanie Schrauwen; Daniela Annibali; Lieve Coenegrachts; Debby Thomas; Mathieu Luyckx; Ilse Gutierrez-Roelens; David Debruyne; Katrien Konings; Philippe Moerman; Ignace Vergote; Diether Lambrechts; Frédéric Amant
OBJECTIVE Endometrial carcinoma (EC) is the sixth most common cancer in women and therapies are limited for advanced and recurrent disease. Patient-derived tumor xenograft (PDTX) models are becoming popular tools in translational research because of their histological and genetic similarity to the original tumors and the ability to predict therapeutic response to treatments. Here, we established and characterized a panel of 24 EC PDTX models which includes the major histological and genetic subtypes observed in patients. METHODS Fresh tumor tissues collected from primary, metastatic and recurrent type I and type II EC patients were engrafted in immunocompromised mice. Histology, vimentin, and cytokeratin expression were evaluated, together with Microsatellite instability (MSI), mutation profiling by Whole Exome Sequencing and copy number profiling by Whole Genome Low Coverage Sequencing. The efficacy of both PI3K and MEK inhibitors was evaluated in a model of endometrioid carcinoma harboring PTEN, PIK3CA and KRAS mutations. RESULTS We observed good similarity between primary tumors and the corresponding xenografts, at histological and genetic level. Among the engrafted endometrioid models, we found a significant enrichment of MSI and POLE mutated tumors, compared to non-engrafted samples. Combination treatment with NVP-BEZ235 and AZD6244 showed the possibility to stabilize the tumor growth in one model originated from a patient who already received several lines of chemotherapy. CONCLUSION The established EC PDTX models, resembling the original human tumors, promise to be useful for preclinical evaluation of novel combination and targeted therapies in specific EC subgroups.
Gynecologic Oncology | 2015
Stefanie Schrauwen; Jeroen Depreeuw; Lieve Coenegrachts; Els Hermans; Diether Lambrechts; Frédéric Amant
OBJECTIVES Endometrial carcinoma (EC) is the most common gynecological cancer in the Western World. Treatment options are limited for advanced and recurrent disease. Therefore, new treatment options are necessary. Inhibition of the PI3K/AKT/mTOR and/or the Ras/Raf/MEK pathways is suggested to be clinically relevant. However, the knowledge about the effect of combination targeted therapy in EC is limited. The aim of this study was to investigate the effect of these therapies on primary endometrioid EC cell cultures in vitro and in vivo. METHODS Primary endometrioid EC cell cultures were incubated with Temsirolimus (mTORC1 inhibitor), NVP-BKM120 (pan-PI3K inhibitor), NVP-BEZ235 (pan-PI3K/mTOR inhibitor), or AZD6244 (MEK1/2 inhibitor) as single treatment. In vitro, the effect of NVP-BEZ235 with or without AZD6244 was determined for cell viability, cell cycle arrest, apoptosis induction, and cell signaling. In vivo, the effect of NVP-BEZ35 was investigated for 2 subcutaneous xenograft models of the corresponding primary cultures. RESULTS NVP-BEZ235 was the most potent PI3K/AKT/mTOR pathway inhibitor. NVP-BEZ235 and AZD6244 reduced cell viability and induced cell cycle arrest and apoptosis, by reduction of p-AKT, p-S6, and p-ERK levels. Combination treatment showed a synergistic effect. In vivo, NVP-BEZ235 reduced tumor growth and inhibited p-S6 expression. The effects of the compounds were independent of the mutation profile of the cell cultures used. CONCLUSIONS A synergistic antitumor effect was shown for NVP-BEZ235 and AZD6244 in primary endometrioid EC cells in vitro. In addition, NVP-BEZ235 induced reduction of tumor growth in vivo. Therefore, targeted therapies seem an interesting strategy to further evaluate in clinical trials.