Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lieve Moons is active.

Publication


Featured researches published by Lieve Moons.


Cell | 1999

Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis

Peter Carmeliet; MariaGrazia Lampugnani; Lieve Moons; Ferrucio Breviario; Veerle Compernolle; Françoise Bono; Giovanna Balconi; Raffaella Spagnuolo; Bert Oosthuyse; Mieke Dewerchin; Adriana Zanetti; Anne Angellilo; Virginie Mattot; Dieter Nuyens; Esther Lutgens; Frederic Clotman; Marco C. de Ruiter; Adriana C. Gittenberger-de Groot; Robert E. Poelmann; Florea Lupu; Jean-Marc Herbert; Desire Collen; Elizabetta Dejana

Vascular endothelial cadherin, VE-cadherin, mediates adhesion between endothelial cells and may affect vascular morphogenesis via intracellular signaling, but the nature of these signals remains unknown. Here, targeted inactivation (VEC-/-) or truncation of the beta-catenin-binding cytosolic domain (VECdeltaC/deltaC) of the VE-cadherin gene was found not to affect assembly of endothelial cells in vascular plexi, but to impair their subsequent remodeling and maturation, causing lethality at 9.5 days of gestation. Deficiency or truncation of VE-cadherin induced endothelial apoptosis and abolished transmission of the endothelial survival signal by VEGF-A to Akt kinase and Bcl2 via reduced complex formation with VEGF receptor-2, beta-catenin, and phosphoinositide 3 (PI3)-kinase. Thus, VE-cadherin/ beta-catenin signaling controls endothelial survival.


Nature Medicine | 2002

Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1

Aernout Luttun; Marc Tjwa; Lieve Moons; Yan Wu; Anne Angelillo-Scherrer; Fang Liao; Janice A. Nagy; Andrea T. Hooper; Josef Priller; Bert De Klerck; Veerle Compernolle; Evis Daci; Peter Bohlen; Mieke Dewerchin; Jean Marc Herbert; Roy A. Fava; Patrick Matthys; Geert Carmeliet; Desire Collen; Harold F. Dvorak; Daniel J. Hicklin; Peter Carmeliet

The therapeutic potential of placental growth factor (PlGF) and its receptor Flt1 in angiogenesis is poorly understood. Here, we report that PlGF stimulated angiogenesis and collateral growth in ischemic heart and limb with at least a comparable efficiency to vascular endothelial growth factor (VEGF). An antibody against Flt1 suppressed neovascularization in tumors and ischemic retina, and angiogenesis and inflammatory joint destruction in autoimmune arthritis. Anti-Flt1 also reduced atherosclerotic plaque growth and vulnerability, but the atheroprotective effect was not attributable to reduced plaque neovascularization. Inhibition of VEGF receptor Flk1 did not affect arthritis or atherosclerosis, indicating that inhibition of Flk1-driven angiogenesis alone was not sufficient to halt disease progression. The anti-inflammatory effects of anti-Flt1 were attributable to reduced mobilization of bone marrow–derived myeloid progenitors into the peripheral blood; impaired infiltration of Flt1-expressing leukocytes in inflamed tissues; and defective activation of myeloid cells. Thus, PlGF and Flt1 constitute potential candidates for therapeutic modulation of angiogenesis and inflammation.


Nature Genetics | 2001

Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration

Bert Oosthuyse; Lieve Moons; Erik Storkebaum; Heike Beck; Dieter Nuyens; Koen Brusselmans; Jo Van Dorpe; Peter Hellings; Marchel Gorselink; Stephane Heymans; Gregor Theilmeier; Mieke Dewerchin; Vincent Laudenbach; Patrick Vermylen; Harold Raat; Till Acker; Vicky Vleminckx; Ludo Van Den Bosch; Neil R. Cashman; Hajime Fujisawa; Maarten R. Drost; Raf Sciot; Frans Bruyninckx; Daniel J. Hicklin; Can Ince; Pierre Gressens; Florea Lupu; Karl H. Plate; Wim Robberecht; Jean-Marc Herbert

Hypoxia stimulates angiogenesis through the binding of hypoxia-inducible factors to the hypoxia-response element in the vascular endothelial growth factor (Vegf) promotor. Here, we report that deletion of the hypoxia-response element in the Vegf promotor reduced hypoxic Vegf expression in the spinal cord and caused adult-onset progressive motor neuron degeneration, reminiscent of amyotrophic lateral sclerosis. The neurodegeneration seemed to be due to reduced neural vascular perfusion. In addition, Vegf165 promoted survival of motor neurons during hypoxia through binding to Vegf receptor 2 and neuropilin 1. Acute ischemia is known to cause nonselective neuronal death. Our results indicate that chronic vascular insufficiency and, possibly, insufficient Vegf-dependent neuroprotection lead to the select degeneration of motor neurons.


Nature Medicine | 1999

Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure.

Stephane Heymans; Aernout Luttun; Dieter Nuyens; Gregor Theilmeier; Esther E. Creemers; Lieve Moons; G D Dyspersin; Jpm Cleutjens; M Shipley; A Angellilo; Marcel Levi; O Nübe; Andrew Baker; Eli Keshet; Florea Lupu; Jean-Marc Herbert; Jos F.M. Smits; Steve Shapiro; Myriam Baes; Marcel Borgers; Desire Collen; Mat J.A.P. Daemen; Peter Carmeliet

Cardiac rupture is a fatal complication of acute myocardial infarction lacking treatment. Here, acute myocardial infarction resulted in rupture in wild-type mice and in mice lacking tissue-type plasminogen activator, urokinase receptor, matrix metalloproteinase stromelysin-1 or metalloelastase. Instead, deficiency of urokinase-type plasminogen activator (u-PA–/–) completely protected against rupture, whereas lack of gelatinase-B partially protected against rupture. However, u-PA–/– mice showed impaired scar formation and infarct revascularization, even after treatment with vascular endothelial growth factor, and died of cardiac failure due to depressed contractility, arrhythmias and ischemia. Temporary administration of PA inhibitor-1 or the matrix metalloproteinase-inhibitor TIMP-1 completely protected wild-type mice against rupture but did not abort infarct healing, thus constituting a new approach to prevent cardiac rupture after acute myocardial infarction.


Nature Medicine | 1999

Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188.

Peter Carmeliet; Yin-Shan Ng; Dieter Nuyens; Gregor Theilmeier; Koen Brusselmans; Elisabeth Ehler; Vijay V. Kakkar; Ingeborg Stalmans; Virginie Mattot; Jean-Claude Perriard; Mieke Dewerchin; Willem Flameng; Andras Nagy; Florea Lupu; Lieve Moons; Desire Collen; Patricia A. D'Amore; David T. Shima

Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF 164 and VEGF 188


Nature Medicine | 2003

Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1

Monica Autiero; Johannes Waltenberger; Didier Communi; Andrea Kranz; Lieve Moons; Diether Lambrechts; Jens Kroll; Stephane Plaisance; Maria De Mol; Françoise Bono; Stefanie Kliche; Guido Fellbrich; Kurt Ballmer-Hofer; Domenico Maglione; Ulrike Mayr-Beyrle; Mieke Dewerchin; Saskia Dombrowski; Danica Stanimirovic; Paul Van Hummelen; Christoph Dehio; Daniel J. Hicklin; Graziella Persico; Jean-Marc Herbert; David Communi; Masabumi Shibuya; Desire Collen; Edward M. Conway; Peter Carmeliet

Therapeutic angiogenesis is likely to require the administration of factors that complement each other. Activation of the receptor tyrosine kinase (RTK) Flk1 by vascular endothelial growth factor (VEGF) is crucial, but molecular interactions of other factors with VEGF and Flk1 have been studied to a limited extent. Here we report that placental growth factor (PGF, also known as PlGF) regulates inter- and intramolecular cross talk between the VEGF RTKs Flt1 and Flk1. Activation of Flt1 by PGF resulted in intermolecular transphosphorylation of Flk1, thereby amplifying VEGF-driven angiogenesis through Flk1. Even though VEGF and PGF both bind Flt1, PGF uniquely stimulated the phosphorylation of specific Flt1 tyrosine residues and the expression of distinct downstream target genes. Furthermore, the VEGF/PGF heterodimer activated intramolecular VEGF receptor cross talk through formation of Flk1/Flt1 heterodimers. The inter- and intramolecular VEGF receptor cross talk is likely to have therapeutic implications, as treatment with VEGF/PGF heterodimer or a combination of VEGF plus PGF increased ischemic myocardial angiogenesis in a mouse model that was refractory to VEGF alone.


Cell | 2007

Anti-PlGF Inhibits Growth of VEGF(R)-Inhibitor-Resistant Tumors without Affecting Healthy Vessels

Christian Fischer; Bart Jonckx; Massimiliano Mazzone; Serena Zacchigna; Sonja Loges; Lucia Pattarini; Emmanuel Chorianopoulos; Laurens Liesenborghs; Marta Koch; Maria De Mol; Monica Autiero; Sabine Wyns; Stephane Plaisance; Lieve Moons; Nico van Rooijen; Mauro Giacca; Jean-Marie Stassen; Mieke Dewerchin; Desire Collen; Peter Carmeliet

Novel antiangiogenic strategies with complementary mechanisms are needed to maximize efficacy and minimize resistance to current angiogenesis inhibitors. We explored the therapeutic potential and mechanisms of alphaPlGF, an antibody against placental growth factor (PlGF), a VEGF homolog, which regulates the angiogenic switch in disease, but not in health. alphaPlGF inhibited growth and metastasis of various tumors, including those resistant to VEGF(R) inhibitors (VEGF(R)Is), and enhanced the efficacy of chemotherapy and VEGF(R)Is. alphaPlGF inhibited angiogenesis, lymphangiogenesis, and tumor cell motility. Distinct from VEGF(R)Is, alphaPlGF prevented infiltration of angiogenic macrophages and severe tumor hypoxia, and thus, did not switch on the angiogenic rescue program responsible for resistance to VEGF(R)Is. Moreover, it did not cause or enhance VEGF(R)I-related side effects. The efficacy and safety of alphaPlGF, its pleiotropic and complementary mechanism to VEGF(R)Is, and the negligible induction of an angiogenic rescue program suggest that alphaPlGF may constitute a novel approach for cancer treatment.


Nature Medicine | 2002

Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice

Veerle Compernolle; Koen Brusselmans; Till Acker; Peter Hoet; Marc Tjwa; Heike Beck; Stephane Plaisance; Yuval Dor; Eli Keshet; Florea Lupu; Benoit Nemery; Mieke Dewerchin; Paul P. Van Veldhoven; Karl H. Plate; Lieve Moons; Desire Collen; Peter Carmeliet

Respiratory distress syndrome (RDS) due to insufficient production of surfactant is a common and severe complication of preterm delivery. Here, we report that loss of the hypoxia-inducible transcription factor-2α (HIF-2α) caused fatal RDS in neonatal mice due to insufficient surfactant production by alveolar type 2 cells. VEGF, a target of HIF-2α, regulates fetal lung maturation: because VEGF levels in alveolar cells were reduced in HIF-2α-deficient fetuses; mice with a deficiency of the VEGF164 and VEGF188 isoforms or of the HIF-binding site in the VEGF promotor died of RDS; intrauterine delivery of anti-VEGF-receptor-2 antibodies caused RDS and VEGF stimulated production of surfactant proteins by cultured type 2 pneumocytes. Intrauterine delivery or postnatal intratracheal instillation of VEGF stimulated conversion of glycogen to surfactant and protected preterm mice against RDS. The pneumotrophic effect of VEGF may have therapeutic potential for lung maturation in preterm infants.


Journal of Clinical Investigation | 2002

Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms

Ingeborg Stalmans; Yin-Shan Ng; Richard M. Rohan; Marcus Fruttiger; Ann Bouché; Ali Yüce; Hajime Fujisawa; Bart Hermans; Moshe Shani; Sandra Jansen; Dan Hicklin; David J. Anderson; Tom A. Gardiner; Hans-Peter Hammes; Lieve Moons; Mieke Dewerchin; Desire Collen; Peter Carmeliet; Patricia A. D'Amore

The murine VEGF gene is alternatively transcribed to yield the VEGF(120), VEGF(164), and VEGF(188) isoforms, which differ in their potential to bind to heparan sulfate and neuropilin-1 and to stimulate endothelial growth. Here, their role in retinal vascular development was studied in mice selectively expressing single isoforms. VEGF(164/164) mice were normal, healthy, and had normal retinal angiogenesis. In contrast, VEGF(120/120) mice exhibited severe defects in vascular outgrowth and patterning, whereas VEGF(188/188) mice displayed normal venular outgrowth but impaired arterial development. It is noteworthy that neuropilin-1, a receptor for VEGF(164), was predominantly expressed in retinal arterioles. These findings reveal distinct roles of the various VEGF isoforms in vascular patterning and arterial development in the retina.


Nature Neuroscience | 2005

Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS

Erik Storkebaum; Diether Lambrechts; Mieke Dewerchin; Maria-Paz Moreno-Murciano; Saskia Appelmans; Hideyasu Oh; Philip Van Damme; Bart P.F. Rutten; W.Y. Man; Maria De Mol; Sabine Wyns; David Manka; Kristel Vermeulen; Ludo Van Den Bosch; Nico Mertens; Christoph Schmitz; Wim Robberecht; Edward M. Conway; Désiré Collen; Lieve Moons; Peter Carmeliet

Neurotrophin treatment has so far failed to prolong the survival of individuals affected with amyotrophic lateral sclerosis (ALS), an incurable motoneuron degenerative disorder. Here we show that intracerebroventricular (i.c.v.) delivery of recombinant vascular endothelial growth factor (Vegf) in a SOD1G93A rat model of ALS delays onset of paralysis by 17 d, improves motor performance and prolongs survival by 22 d, representing the largest effects in animal models of ALS achieved by protein delivery. By protecting cervical motoneurons, i.c.v. delivery of Vegf is particularly effective in rats with the most severe form of ALS with forelimb onset. Vegf has direct neuroprotective effects on motoneurons in vivo, because neuronal expression of a transgene expressing the Vegf receptor prolongs the survival of SOD1G93A mice. On i.c.v. delivery, Vegf is anterogradely transported and preserves neuromuscular junctions in SOD1G93A rats. Our findings in preclinical rodent models of ALS may have implications for treatment of neurodegenerative disease in general.

Collaboration


Dive into the Lieve Moons's collaboration.

Top Co-Authors

Avatar

Peter Carmeliet

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Desire Collen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Ingeborg Stalmans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Inge Van Hove

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Mieke Dewerchin

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Lies De Groef

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Evelien Vandewalle

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Tine Van Bergen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Marc Tjwa

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Florea Lupu

Oklahoma Medical Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge