Lieven J. Stuyver
Janssen Pharmaceutica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lieven J. Stuyver.
Antimicrobial Agents and Chemotherapy | 2000
K Van Vaerenbergh; K. Van Laethem; Jan Albert; Charles A. Boucher; Bonaventura Clotet; M. Floridia; Jan Gerstoft; Bo Hejdeman; Carsten Uhd Nielsen; Christophe Pannecouque; Luc Perrin; M. F. Pirillo; L Ruiz; Jc Schmit; François Schneider; A. Schoolmeester; Rob Schuurman; H. J. Stellbrink; Lieven J. Stuyver; J. Van Lunzen; B Van Remoortel; E. Van Wijngaerden; S. Vella; Myriam Witvrouw; Sabine Yerly; E. De Clercq; Jan Desmyter; Anne-Mieke Vandamme
ABSTRACT The prevalence and the genotypic and phenotypic characteristics of multinucleoside-resistant (MNR) human immunodeficiency virus type 1 (HIV-1) variants in Europe were investigated in a multicenter study that involved centers in nine European countries. Study samples (n = 363) collected between 1991 and 1997 from patients exposed to two or more nucleoside analogue reverse transcriptase inhibitors (NRTIs) and 274 control samples from patients exposed to no or one NRTI were screened for two marker mutations of multinucleoside resistance (the Q151M mutation and a mutation with a 2-amino-acid insertion at codon 69, T69S-XX). Q151M was identified in six of the study samples (1.6%), and T69S-XX was identified in two of the study samples (0.5%; both of them T69S-SS), but both patterns were absent among control samples. Non-NRTI (NNRTI)-related changes were observed in viral strains from two patients, which displayed the Q151M resistance pattern, although the patients were NNRTI naive. The patients whose isolates displayed multinucleoside resistance had received treatment with zidovudine and either didanosine, zalcitabine, or stavudine. Both resistance patterns conferred broad cross-resistance to NRTIs in vitro and a poor response to treatment in vivo. MNR HIV-1 is found only among multinucleoside-experienced patients. Its prevalence is low in Europe, but it should be closely monitored since it seriously limits treatment options.
Journal of Acquired Immune Deficiency Syndromes | 1999
K. Van Laethem; K Van Vaerenbergh; Jean-Claude Schmit; Suzanne Sprecher; Philippe Hermans; V. De Vroey; Rob Schuurman; Thomas Harrer; Myriam Witvrouw; E. Van Wijngaerden; Lieven J. Stuyver; M. Van Ranst; Jan Desmyter; E. De Clercq; Anne-Mieke Vandamme
The sensitivity and discriminatory power of the 151 and 215 amplification refractory mutation system (ARMS) were evaluated, and their performance for the detection of drug resistance in mixed genotypic populations of the reverse transcription (RT) gene of HIV-1 were compared with T7 sequencing, cycle sequencing, the line probe assay (LiPA) HIV-1 RT test, and the recombinant virus assay (RVA). ARMS and the LiPA HIV-1 RT test were shown to be able to detect minor variants that in particular cases comprised only 1%. T7 sequencing on an ALF semiautomated sequencer could correctly score mixtures only when variants were present at 50%. Cycle sequencing on an ABI PRISM 310 improved the sensitivity for mixtures to about 25%. Using RVA, it was shown that at least 50% of the virus population needed to carry the resistance mutation at codon 184 to afford phenotypic resistance against lamivudine. The two point mutation assays therefore proved to be more sensitive methods than sequencing and RVA to reliably determine a gradual shift in HIV-1 drug resistance mutations in follow-up of patients infected with HIV-1. In 4 of 5 treated patients who were followed by ARMS, a gradual shift in resistant genotypic populations was observed during a period of 6 to 19 months. For 1 patient, a shift from wild to mutant type at position 151 occurred within 2 months, without mixed genotypic intermediate types being detected.
Journal of Clinical Microbiology | 2013
Liesbeth Van Wesenbeeck; Hanne Meeuws; Andrea Van Immerseel; Gabriela Ispas; Kristiane Schmidt; Lieselot Houspie; Marc Van Ranst; Lieven J. Stuyver
ABSTRACT Respiratory tract infections (RTIs) are caused by a plethora of viral and bacterial pathogens. In particular, lower RTIs are a leading cause of hospitalization and mortality. Timely detection of the infecting respiratory pathogens is crucial to optimize treatment and care. In this study, three U.S. Food and Drug Administration-approved molecular multiplex platforms (Prodesse ProFLU+/FAST+, FilmArray RP, and Verigene RV+) were evaluated for influenza virus detection in 171 clinical samples collected during the Belgian 2011-2012 influenza season. Sampling was done using mid-turbinate flocked swabs, and the collected samples were stored in universal transport medium. The amount of viral RNA present in the swab samples ranged between 3.07 and 8.82 log10 copies/ml. Sixty samples were concordant influenza A virus positive, and 8 samples were found to be concordant influenza B virus positive. Other respiratory viruses that were detected included human rhinovirus/enterovirus, respiratory syncytial virus, parainfluenza virus type 1, human metapneumovirus, and coronavirus NL63. Twenty-five samples yielded discordant results across the various assays which required further characterization by sequencing. The FilmArray RP and Prodesse ProFLU+/FAST+ assays were convenient to perform with regard to sensitivity, ease of use, and low percentages of invalid results. Although the limit of sensitivity is of utmost importance, many other factors should be taken into account in selecting the most convenient molecular diagnostic assay for the detection of respiratory pathogens in clinical samples.
PLOS ONE | 2013
Tom Van Loy; Kim Thys; Luc Tritsmans; Lieven J. Stuyver
JC virus is a human polyomavirus that infects the majority of people without apparent symptoms in healthy subjects and it is the causative agent of progressive multifocal leucoencephalopathy (PML), a disorder following lytic infection of oligodendrocytes that mainly manifests itself under immunosuppressive conditions. A hallmark for JC virus isolated from PML-brain is the presence of rearrangements in the non-coding control region (NCCR) interspersed between the early and late genes on the viral genome. Such rearrangements are believed to originate from the archetype JC virus which is shed in urine by healthy subjects and PML patients. We applied next generation sequencing to explore the non-coding control region variability in urine of healthy subjects in search for JC virus quasispecies and rearrangements reminiscent of PML. For 61 viral shedders (out of a total of 254 healthy subjects) non-coding control region DNA and VP1 (major capsid protein) coding sequences were initially obtained by Sanger sequencing. Deletions between 1 and 28 nucleotides long appeared in ∼24.5% of the NCCR sequences while insertions were only detected in ∼3.3% of the samples. 454 pyrosequencing was applied on a subset of 54 urine samples demonstrating the existence of JC virus quasispecies in four subjects (∼7.4%). Hence, our results indicate that JC virus DNA in urine is not always restricted to one unique virus variant, but can be a mixture of naturally occurring variants (quasispecies) reflecting the susceptibility of the non-coding control region for genomic rearrangements in healthy individuals. Our findings pave the way to explore the presence of viral quasispecies and the altered viral tropism that might go along with it as a potential risk factor for opportunistic secondary infections such as PML.
Virology Journal | 2013
Ole Lagatie; Luc Tritsmans; Lieven J. Stuyver
Polyomaviruses are a family of non-enveloped DNA viruses infecting several species, including humans, primates, birds, rodents, bats, horse, cattle, raccoon and sea lion. They typically cause asymptomatic infection and establish latency but can be reactivated under certain conditions causing severe diseases. MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in several cellular processes by binding to and inhibiting the translation of specific mRNA transcripts. In this review, we summarize the current knowledge of microRNAs involved in polyomavirus infection. We review in detail the different viral miRNAs that have been discovered and the role they play in controlling both host and viral protein expression. We also give an overview of the current understanding on how host miRNAs may function in controlling polyomavirus replication, immune evasion and pathogenesis.
Virology Journal | 2014
Ole Lagatie; Tom Van Loy; Luc Tritsmans; Lieven J. Stuyver
BackgroundJC polyomavirus (JCPyV) is a widespread human polyomavirus that usually resides latently in its host, but can be reactivated under immune-compromised conditions potentially causing Progressive Multifocal Leukoencephalopathy (PML). JCPyV encodes its own microRNA, jcv-miR-J1.MethodsWe have investigated in 50 healthy subjects whether jcv-miR-J1-5p (and its variant jcv-miR-J1a-5p) can be detected in plasma or urine.ResultsWe found that the overall detection rate of JCPyV miRNA was 74% (37/50) in plasma and 62% (31/50) in urine. Subjects were further categorized based on JCPyV VP1 serology status and viral shedding. In seronegative subjects, JCPyV miRNA was found in 86% (12/14) and 57% (8/14) of plasma and urine samples, respectively. In seropositive subjects, the detection rate was 69% (25/36) and 64% (23/36) for plasma and urine, respectively. Furthermore, in seropositive subjects shedding virus in urine, higher levels of urinary viral miRNAs were observed, compared to non-shedding seropositive subjects (Pu2009<u20090.001). No correlation was observed between urinary and plasma miRNAs.ConclusionThese data indicate that analysis of circulating viral miRNAs divulge the presence of latent JCPyV infection allowing further stratification of seropositive individuals. Also, our data indicate higher infection rates than would be expected from serology alone.
Journal of Clinical Microbiology | 2013
Susan C. Aitken; Michelle Bronze; Carole L. Wallis; Lieven J. Stuyver; Kim Steegen; Sheila Balinda; Cissy Kityo; Wendy Stevens; Tobias F. Rinke de Wit; Rob Schuurman
ABSTRACT In resource-limited settings (RLS), reverse transcriptase (RT) inhibitors form the backbone of first-line treatment regimens. We have developed a simplified HIV-1 drug resistance genotyping assay targeting the region of RT harboring all major RT inhibitor resistance mutation positions, thus providing all relevant susceptibility data for first-line failures, coupled with minimal cost and labor. The assay comprises a one-step RT-PCR amplification reaction, followed by sequencing using one forward and one reverse primer, generating double-stranded coverage of RT amino acids (aa) 41 to 238. The assay was optimized for all major HIV-1 group M subtypes in plasma and dried blood spot (DBS) samples using a panel of reference viruses for HIV-1 subtypes A to D, F to H, and circulating recombinant form 01_AE (CRF01_AE) and applied to 212 clinical plasma samples and 25 DBS samples from HIV-1-infected individuals from Africa and Europe. The assay was subsequently transferred to Uganda and applied locally on clinical plasma samples. All major HIV-1 subtypes could be detected with an analytical sensitivity of 5.00E+3 RNA copies/ml for plasma and DBS. Application of the assay on 212 clinical samples from African subjects comprising subtypes A to D, F to H (rare), CRF01_AE, and CRF02_AG at a viral load (VL) range of 6.71E+2 to 1.00E+7 (median, 1.48E+5) RNA copies/ml was 94.8% (n = 201) successful. Application on clinical samples in Uganda demonstrated a comparable success rate. Genotyping of clinical DBS samples, all subtype C with a VL range of 1.02E+3 to 4.49E+5 (median, 1.42E+4) RNA copies/ml, was 84.0% successful. The described assay greatly reduces hands-on time and the costs required for genotyping and is ideal for use in RLS, as demonstrated in a reference laboratory in Uganda and its successful application on DBS samples.
Methods of Molecular Biology | 2013
Diana Koletzki; Theresa Pattery; Bart Fevery; Leen Vanhooren; Lieven J. Stuyver
Genotypic testing based on subtype-specific amplification and population Sanger sequencing for two nonstructural (NS) protein-coding regions, the NS3/4A protease and the NS5B polymerase, of the hepatitis C virus (HCV) genome is described here. The protocols include the molecular steps for RNA extraction, one-step RT-PCR followed by inner PCR and population Sanger sequencing, to obtain the sequence information of the target regions from the clinical isolates of HCV subtypes 1a and 1b, which can be used to detect any sequence change in the viral genome as for example caused by the development of drug resistance in these two common viral targets.
AIDS Research and Human Retroviruses | 2000
K Van Vaerenbergh; K. Van Laethem; E. Van Wijngaerden; Jean-Claude Schmit; François Schneider; L Ruiz; Bonaventura Clotet; Chris Verhofstede; F. Van Wanzeele; G. M Uyldermans; P. Simons; Lieven J. Stuyver; Philippe Hermans; C. Evans; E. De Clercq; Jan Desmyter; Anne-Mieke Vandamme
We evaluated the predictive value of baseline HIV-1 genotypic resistance mutations for failure of a nucleoside reverse transcriptase inhibitor (NRTI) containing therapy. The change in therapy of 88 HIV-1-infected patients was analyzed retrospectively, relating the genotypic resistance profile at baseline to the evolution of viral load and CD4+ T cell counts. Genotypic resistance at baseline and at 6 months was evaluated with the LiPA HIV-1 RT, which detects mutations at codons 41, 69, 70, 74, 184, and 215. At 1 to 3 months after change in therapy, patients without preexisting resistance mutations to the new drug (group S) had a significantly better evolution in viral load (reduction of 0.37 log(10)) compared with patients with known preexisting resistance mutation(s) (group R) (increase of 0.08 log(10)). This difference was particularly striking for patients with the baseline M184V mutation and whose treatment was modified by the addition of lamivudine. After 6 months the median difference in viral load evolution between the two groups increased to 0.61 log(10): the viral load of patients of group S was still 0.18 log(10) below baseline while patients of group R had an increase of 0.43 log(10) in viral load above baseline. Changes in CD4+ T cell counts were not significantly different. The evolution in viral load in HIV-1-infected patients with and without baseline resistance mutation(s) toward a newly added NRTI is significantly different at 1-3 months and at 6 months after changing or adding one NRTI.
PLOS ONE | 2013
Anna Maria Geretti; Zoe Fox; Jeffrey A. Johnson; Clare Booth; Jonathan Lipscomb; Lieven J. Stuyver; Gilda Tachedjian; John D. Baxter; Giota Touloumi; Clara Lehmann; Andrew Owen; Andrew N. Phillips
Background Non-nucleoside reverse transcriptase inhibitor (NNRTI)-resistant mutants have been shown to emerge after interruption of suppressive NNRTI-based antiretroviral therapy (ART) using routine testing. The aim of this study was to quantify the risk of resistance by sensitive testing and correlate the detection of resistance with NNRTI concentrations after treatment interruption and virologic responses after treatment resumption. Methods Resistance-associated mutations (RAMs) and NNRTI concentrations were studied in plasma from 132 patients who interrupted suppressive ART within SMART. RAMs were detected by Sanger sequencing, allele-specific PCR, and ultra-deep sequencing. NNRTI concentrations were measured by sensitive high-performance liquid chromatography. Results Four weeks after NNRTI interruption, 19/31 (61.3%) and 34/39 (87.2%) patients showed measurable nevirapine (>0.25 ng/ml) or efavirenz (>5 ng/ml) concentrations, respectively. Median eight weeks after interruption, 22/131 (16.8%) patients showed ≥1 NNRTI-RAM, including eight patients with NNRTI-RAMs detected only by sensitive testing. The adjusted odds ratio (OR) of NNRTI-RAM detection was 7.62 (95% confidence interval [CI] 1.52, 38.30; pu200a=u200a0.01) with nevirapine or efavirenz concentrations above vs. below the median measured in the study population. Staggered interruption, whereby nucleos(t)ide reverse transcriptase inhibitors (NRTIs) were continued for median nine days after NNRTI interruption, did not prevent NNRTI-RAMs, but increased detection of NRTI-RAMs (OR 4.25; 95% CI 1.02, 17.77; pu200a=u200a0.03). After restarting NNRTI-based ART (nu200a=u200a90), virologic suppression rates <400 copies/ml were 8/13 (61.5%) with NNRTI-RAMs, 7/11 (63.6%) with NRTI-RAMs only, and 51/59 (86.4%) without RAMs. The ORs of re-suppression were 0.18 (95% CI 0.03, 0.89) and 0.17 (95% CI 0.03, 1.15) for patients with NNRTI-RAMs or NRTI-RAMs only respectively vs. those without RAMs (pu200a=u200a0.04). Conclusions Detection of resistant mutants in the rebound viremia after interruption of efavirenz- or nevirapine-based ART affects outcomes once these drugs are restarted. Further studies are needed to determine RAM persistence in untreated patients and impact on newer NNRTIs.