Lieven Sterck
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lieven Sterck.
Science | 2006
Gerald A. Tuskan; Stephen P. DiFazio; Stefan Jansson; Joerg Bohlmann; Igor V. Grigoriev; Uffe Hellsten; Nik Putnam; Steven Ralph; Stephane Rombauts; Asaf Salamov; Jacqueline E. Schein; Lieven Sterck; Andrea Aerts
We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.
Nature | 2010
J. Mark Cock; Lieven Sterck; Pierre Rouzé; Delphine Scornet; Andrew E. Allen; Grigoris D. Amoutzias; Véronique Anthouard; François Artiguenave; Jean-Marc Aury; Jonathan H. Badger; Bank Beszteri; Kenny Billiau; Eric Bonnet; John H. Bothwell; Chris Bowler; Catherine Boyen; Colin Brownlee; Carl J. Carrano; Bénédicte Charrier; Ga Youn Cho; Susana M. Coelho; Jonas Collén; Erwan Corre; Corinne Da Silva; Ludovic Delage; Nicolas Delaroque; Simon M. Dittami; Sylvie Doulbeau; Marek Eliáš; Garry Farnham
Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.
Nature | 2014
Alexander Andrew Myburg; Dario Grattapaglia; Gerald A. Tuskan; Uffe Hellsten; Richard D. Hayes; Jane Grimwood; Jerry Jenkins; Erika Lindquist; Hope Tice; Diane Bauer; David Goodstein; Inna Dubchak; Alexandre Poliakov; Eshchar Mizrachi; Anand Raj Kumar Kullan; Steven G. Hussey; Desre Pinard; Karen Van der Merwe; Pooja Singh; Ida Van Jaarsveld; Orzenil Bonfim Silva-Junior; Roberto C. Togawa; Marilia R. Pappas; Danielle A. Faria; Carolina Sansaloni; Cesar D. Petroli; Xiaohan Yang; Priya Ranjan; Timothy J. Tschaplinski; Chu-Yu Ye
Eucalypts are the world’s most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Steven B. Cannon; Lieven Sterck; Stephane Rombauts; Shusei Sato; Foo Cheung; Jérôme Gouzy; Xiaohong Wang; Joann Mudge; Jayprakash Vasdewani; Thomas Schiex; Manuel Spannagl; Erin Monaghan; Christine Nicholson; Sean Humphray; Heiko Schoof; Klaus F. X. Mayer; Jane Rogers; Francis Quetier; Giles E. D. Oldroyd; Frédéric Debellé; Douglas R. Cook; Ernest F. Retzel; Bruce A. Roe; Christopher D. Town; Satoshi Tabata; Yves Van de Peer; Nevin D. Young
Genome sequencing of the model legumes, Medicago truncatula and Lotus japonicus, provides an opportunity for large-scale sequence-based comparison of two genomes in the same plant family. Here we report synteny comparisons between these species, including details about chromosome relationships, large-scale synteny blocks, microsynteny within blocks, and genome regions lacking clear correspondence. The Lotus and Medicago genomes share a minimum of 10 large-scale synteny blocks, each with substantial collinearity and frequently extending the length of whole chromosome arms. The proportion of genes syntenic and collinear within each synteny block is relatively homogeneous. Medicago–Lotus comparisons also indicate similar and largely homogeneous gene densities, although gene-containing regions in Mt occupy 20–30% more space than Lj counterparts, primarily because of larger numbers of Mt retrotransposons. Because the interpretation of genome comparisons is complicated by large-scale genome duplications, we describe synteny, synonymous substitutions and phylogenetic analyses to identify and date a probable whole-genome duplication event. There is no direct evidence for any recent large-scale genome duplication in either Medicago or Lotus but instead a duplication predating speciation. Phylogenetic comparisons place this duplication within the Rosid I clade, clearly after the split between legumes and Salicaceae (poplar).
The Plant Cell | 2009
Sebastian Proost; Michiel Van Bel; Lieven Sterck; Kenny Billiau; Thomas Van Parys; Yves Van de Peer; Klaas Vandepoele
The number of sequenced genomes of representatives within the green lineage is rapidly increasing. Consequently, comparative sequence analysis has significantly altered our view on the complexity of genome organization, gene function, and regulatory pathways. To explore all this genome information, a centralized infrastructure is required where all data generated by different sequencing initiatives is integrated and combined with advanced methods for data mining. Here, we describe PLAZA, an online platform for plant comparative genomics (http://bioinformatics.psb.ugent.be/plaza/). This resource integrates structural and functional annotation of published plant genomes together with a large set of interactive tools to study gene function and gene and genome evolution. Precomputed data sets cover homologous gene families, multiple sequence alignments, phylogenetic trees, intraspecies whole-genome dot plots, and genomic colinearity between species. Through the integration of high confidence Gene Ontology annotations and tree-based orthology between related species, thousands of genes lacking any functional description are functionally annotated. Advanced query systems, as well as multiple interactive visualization tools, are available through a user-friendly and intuitive Web interface. In addition, detailed documentation and tutorials introduce the different tools, while the workbench provides an efficient means to analyze user-defined gene sets through PLAZAs interface. In conclusion, PLAZA provides a comprehensible and up-to-date research environment to aid researchers in the exploration of genome information within the green plant lineage.
Trends in Plant Science | 2009
Yves Van de Peer; Jeffrey A. Fawcett; Sebastian Proost; Lieven Sterck; Klaas Vandepoele
Flowering plants contain many genes, most of which were created during the past 200 or so million years through small- and large-scale duplications. Paleo-polyploidy events, in particular, have been the subject of much recent research. There is a growing consensus that one or more genome doubling or merging events occurred early during the evolution of the flowering plants, and that many lineages have since undergone additional, independent and more recent duplication events. Here, we review the difficulties in determining the number of genome duplications and discuss how the completion of some additional genome sequences of species occupying key phylogenetic positions has led to a better understanding of the timing of certain duplication events. This is important if we want to demonstrate the significance of genome duplications for the evolution and radiation of (different groups of) flowering plants.
Genome Biology | 2009
Simon M. Dittami; Delphine Scornet; Jean-Louis Petit; Béatrice Segurens; Corinne Da Silva; Erwan Corre; Michael Dondrup; Karl-Heinz Glatting; Rainer König; Lieven Sterck; Pierre Rouzé; Yves Van de Peer; J. Mark Cock; Catherine Boyen; Thierry Tonon
BackgroundBrown algae (Phaeophyceae) are phylogenetically distant from red and green algae and an important component of the coastal ecosystem. They have developed unique mechanisms that allow them to inhabit the intertidal zone, an environment with high levels of abiotic stress. Ectocarpus siliculosus is being established as a genetic and genomic model for the brown algal lineage, but little is known about its response to abiotic stress.ResultsHere we examine the transcriptomic changes that occur during the short-term acclimation of E. siliculosus to three different abiotic stress conditions (hyposaline, hypersaline and oxidative stress). Our results show that almost 70% of the expressed genes are regulated in response to at least one of these stressors. Although there are several common elements with terrestrial plants, such as repression of growth-related genes, switching from primary production to protein and nutrient recycling processes, and induction of genes involved in vesicular trafficking, many of the stress-regulated genes are either not known to respond to stress in other organisms or are have been found exclusively in E. siliculosus.ConclusionsThis first large-scale transcriptomic study of a brown alga demonstrates that, unlike terrestrial plants, E. siliculosus undergoes extensive reprogramming of its transcriptome during the acclimation to mild abiotic stress. We identify several new genes and pathways with a putative function in the stress response and thus pave the way for more detailed investigations of the mechanisms underlying the stress tolerance ofbrown algae.
Nature Methods | 2012
Lieven Sterck; Kenny Billiau; Thomas Abeel; Pierre Rouzé; Yves Van de Peer
of modifications is available for each locus (Supplementary Methods). This allows ORCAE to eliminate a bottleneck found in other online annotation tools, such as yrGATE5, where a curator needs to approve modifications before they become available. Indeed, in the spirit of community annotation, the quality of the presented annotation is the responsibility of the whole community. However, to ensure a certain level of quality, several automatic checks have been put in place that encompass all existing knowledge on the gene structure and functions (for example, whether a KOG or EC number exist) (Supplementary Methods). Finally, ORCAE is highly dynamic: upon modification of a gene model, all the available information is immediately updated and presented on the gene page.
Current Bioinformatics | 2008
Sylvain Foissac; Jérôme Gouzy; Stephane Rombauts; Catherine Mathé; Joelle Amselem; Lieven Sterck; Yves Van de Peer; Pierre Rouzé; Thomas Schiex
In this era of whole genome sequencing, reliable genome annotations (identification of functional regions) are the cornerstones for many subsequent analyses. Not only is careful annotation important for studying the gene and gene family content of a genome and its host, but also for wide-scale transcriptome and proteome analyses attempting to de- scribe a certain biological process or to get a global picture of a cells behavior. Although the number of sequenced ge- nomes is increasing thanks to the application of new technologies, genome-wide analyses will critically depend on the quality of the genome annotations. However, the annotation process is more complicated in the plant field than in the animal field because of the limited funding that leads to much fewer experimental data and less annotation expertise. This situation calls for highly automated annotation platforms that can make the best use of all available data, experimental or not. We discuss how the gene prediction (the process of predicting protein gene structures in genomic sequences) research field increasingly shifts from methods that typically exploited one or two types of data to more integrative approaches that simultaneously deal with various experimental, statistical, or other in silico evidence. We illustrate the importance of inte- grative approaches for producing high-quality automatic annotations of genomes of plants and algae as well as of fungi that live in close association with plants using the platform EuGene as an example.
Current Biology | 2014
Sophia Ahmed; J. Mark Cock; Eugénie Pessia; Rémy Luthringer; Alexandre Cormier; Marine Robuchon; Lieven Sterck; Akira F. Peters; Simon M. Dittami; Erwan Corre; Myriam Valero; Jean-Marc Aury; Denis Roze; Yves Van de Peer; John H. Bothwell; Gabriel Marais; Susana M. Coelho
BACKGROUND A common feature of most genetic sex-determination systems studied so far is that sex is determined by nonrecombining genomic regions, which can be of various sizes depending on the species. These regions have evolved independently and repeatedly across diverse groups. A number of such sex-determining regions (SDRs) have been studied in animals, plants, and fungi, but very little is known about the evolution of sexes in other eukaryotic lineages. RESULTS We report here the sequencing and genomic analysis of the SDR of Ectocarpus, a brown alga that has been evolving independently from plants, animals, and fungi for over one giga-annum. In Ectocarpus, sex is expressed during the haploid phase of the life cycle, and both the female (U) and the male (V) sex chromosomes contain nonrecombining regions. The U and V of this species have been diverging for more than 70 mega-annum, yet gene degeneration has been modest, and the SDR is relatively small, with no evidence for evolutionary strata. These features may be explained by the occurrence of strong purifying selection during the haploid phase of the life cycle and the low level of sexual dimorphism. V is dominant over U, suggesting that femaleness may be the default state, adopted when the male haplotype is absent. CONCLUSIONS The Ectocarpus UV system has clearly had a distinct evolutionary trajectory not only to the well-studied XY and ZW systems but also to the UV systems described so far. Nonetheless, some striking similarities exist, indicating remarkable universality of the underlying processes shaping sex chromosome evolution across distant lineages.