Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liewei Wang is active.

Publication


Featured researches published by Liewei Wang.


The New England Journal of Medicine | 2011

Genomics and Drug Response

Liewei Wang; Howard L. McLeod; Richard M. Weinshilboum

This article reviews recent pharmacogenetic and pharmacogenomic advances and discusses how such advances are reflected in the labeling of drugs.


Cancer Cell | 2009

FKBP51 Affects Cancer Cell Response to Chemotherapy by Negatively Regulating Akt

Huadong Pei; Liang Li; Brooke L. Fridley; Gregory D. Jenkins; Krishna R. Kalari; Wilma L. Lingle; Gloria M. Petersen; Zhenkun Lou; Liewei Wang

Akt is a central regulator of cell growth. Its activity can be negatively regulated by the phosphatase PHLPP that specifically dephosphorylates the hydrophobic motif of Akt (Ser473 in Akt1). However, how PHLPP is targeted to Akt is not clear. Here we show that FKBP51 (FK506-binding protein 51) acts as a scaffolding protein for Akt and PHLPP and promotes dephosphorylation of Akt. Furthermore, FKBP51 is downregulated in pancreatic cancer tissue samples and several cancer cell lines. Decreased FKBP51 expression in cancer cells results in hyperphosphorylation of Akt and decreased cell death following genotoxic stress. Overall, our findings identify FKBP51 as a negative regulator of the Akt pathway, with potentially important implications for cancer etiology and response to chemotherapy.


Nature | 2011

MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites

Huadong Pei; Lindsey Zhang; Kuntian Luo; Yuxin Qin; Marta Chesi; Frances Fei; P. Leif Bergsagel; Liewei Wang; Zhongsheng You; Zhenkun Lou

p53-binding protein 1 (53BP1) is known to be an important mediator of the DNA damage response, with dimethylation of histone H4 lysine 20 (H4K20me2) critical to the recruitment of 53BP1 to double-strand breaks (DSBs). However, it is not clear how 53BP1 is specifically targeted to the sites of DNA damage, as the overall level of H4K20me2 does not seem to increase following DNA damage. It has been proposed that DNA breaks may cause exposure of methylated H4K20 previously buried within the chromosome; however, experimental evidence for such a model is lacking. Here we found that H4K20 methylation actually increases locally upon the induction of DSBs and that methylation of H4K20 at DSBs is mediated by the histone methyltransferase MMSET (also known as NSD2 or WHSC1) in mammals. Downregulation of MMSET significantly decreases H4K20 methylation at DSBs and the subsequent accumulation of 53BP1. Furthermore, we found that the recruitment of MMSET to DSBs requires the γH2AX–MDC1 pathway; specifically, the interaction between the MDC1 BRCT domain and phosphorylated Ser 102 of MMSET. Thus, we propose that a pathway involving γH2AX–MDC1–MMSET regulates the induction of H4K20 methylation on histones around DSBs, which, in turn, facilitates 53BP1 recruitment.


Journal of Clinical Oncology | 2010

Genome-Wide Associations and Functional Genomic Studies of Musculoskeletal Adverse Events in Women Receiving Aromatase Inhibitors

James N. Ingle; Daniel J. Schaid; Paul E. Goss; Mohan Liu; Taisei Mushiroda; Judy Anne W Chapman; Michiaki Kubo; Gregory D. Jenkins; Anthony Batzler; Lois Shepherd; Joseph L. Pater; Liewei Wang; Matthew J. Ellis; Vered Stearns; Daniel C. Rohrer; Matthew P. Goetz; Kathleen I. Pritchard; David A. Flockhart; Yusuke Nakamura; Richard M. Weinshilboum

PURPOSE We performed a case-control genome-wide association study (GWAS) to identify single nucleotide polymorphisms (SNPs) associated with musculoskeletal adverse events (MS-AEs) in women treated with aromatase inhibitors (AIs) for early breast cancer. PATIENTS AND METHODS A nested case-control design was used to select patients enrolled onto the MA.27 phase III trial comparing anastrozole with exemestane. Cases were matched to two controls and were defined as patients with grade 3 or 4 MS-AEs (according to the National Cancer Institutes Common Terminology Criteria for Adverse Events v3.0) or those who discontinued treatment for any grade of MS-AE within the first 2 years. Genotyping was performed with the Illumina Human610-Quad BeadChip. RESULTS The GWAS included 293 cases and 585 controls. A total of 551,358 SNPs were analyzed, followed by imputation and fine mapping of a region of interest on chromosome 14. Four SNPs on chromosome 14 had the lowest P values (2.23E-06 to 6.67E-07). T-cell leukemia 1A (TCL1A) was the gene closest (926-7000 bp) to the four SNPs. Functional genomic studies revealed that one of these SNPs (rs11849538) created an estrogen response element and that TCL1A expression was estrogen dependent, was associated with the variant SNP genotypes in estradiol-treated lymphoblastoid cells transfected with estrogen receptor alpha and was directly related to interleukin 17 receptor A (IL17RA) expression. CONCLUSION This GWAS identified SNPs associated with MS-AEs in women treated with AIs and with a gene (TCL1A) which, in turn, was related to a cytokine (IL17). These findings provide a focus for further research to identify patients at risk for MS-AEs and to explore the mechanisms for these adverse events.


Oncogene | 2006

Thiopurine S-methyltransferase pharmacogenetics: insights, challenges and future directions

Liewei Wang; Richard M. Weinshilboum

The thiopurine S-methyltransferase (TPMT) genetic polymorphism is one of the most ‘mature’ examples in pharmacogenetics. That is true because of its importance clinically for the individualization of thiopurine drug therapy and also because TPMT has provided novel insights into molecular mechanisms responsible for the functional effects of common genetic polymorphisms. This review will summarize the development of our understanding of the role of inheritance in the regulation of TPMT as well as the clinical implications of that genetic regulation. It will also summarize recent studies in which TPMT pharmacogenetics has enhanced our understanding of molecular mechanisms by which common polymorphisms influence or alter function. TPMT pharmacogenetics highlights the potential clinical importance of the translation of pharmacogenetics from bench to bedside, the potential for basic pharmacogenetic research to provide insight into mechanisms by which genetic polymorphisms can alter function, and the challenges associated with the achievement of both of those goals.


Mayo Clinic Proceedings | 2014

Preemptive genotyping for personalized medicine: design of the right drug, right dose, right time-using genomic data to individualize treatment protocol.

Suzette J. Bielinski; Janet E. Olson; Jyotishman Pathak; Richard M. Weinshilboum; Liewei Wang; Kelly Lyke; Euijung Ryu; Paul V. Targonski; Michael D. Van Norstrand; Matthew A. Hathcock; Paul Y. Takahashi; Jennifer B. McCormick; Kiley J. Johnson; Karen J. Maschke; Carolyn R. Rohrer Vitek; Marissa S. Ellingson; Eric D. Wieben; Gianrico Farrugia; Jody A. Morrisette; Keri J. Kruckeberg; Jamie K. Bruflat; Lisa M. Peterson; Joseph H. Blommel; Jennifer M. Skierka; Matthew J. Ferber; John L. Black; Linnea M. Baudhuin; Eric W. Klee; Jason L. Ross; Tamra L. Veldhuizen

OBJECTIVE To report the design and implementation of the Right Drug, Right Dose, Right Time-Using Genomic Data to Individualize Treatment protocol that was developed to test the concept that prescribers can deliver genome-guided therapy at the point of care by using preemptive pharmacogenomics (PGx) data and clinical decision support (CDS) integrated into the electronic medical record (EMR). PATIENTS AND METHODS We used a multivariate prediction model to identify patients with a high risk of initiating statin therapy within 3 years. The model was used to target a study cohort most likely to benefit from preemptive PGx testing among the Mayo Clinic Biobank participants, with a recruitment goal of 1000 patients. We used a Cox proportional hazards model with variables selected through the Lasso shrinkage method. An operational CDS model was adapted to implement PGx rules within the EMR. RESULTS The prediction model included age, sex, race, and 6 chronic diseases categorized by the Clinical Classifications Software for International Classification of Diseases, Ninth Revision codes (dyslipidemia, diabetes, peripheral atherosclerosis, disease of the blood-forming organs, coronary atherosclerosis and other heart diseases, and hypertension). Of the 2000 Biobank participants invited, 1013 (51%) provided blood samples, 256 (13%) declined participation, 555 (28%) did not respond, and 176 (9%) consented but did not provide a blood sample within the recruitment window (October 4, 2012, through March 20, 2013). Preemptive PGx testing included CYP2D6 genotyping and targeted sequencing of 84 PGx genes. Synchronous real-time CDS was integrated into the EMR and flagged potential patient-specific drug-gene interactions and provided therapeutic guidance. CONCLUSION This translational project provides an opportunity to begin to evaluate the impact of preemptive sequencing and EMR-driven genome-guided therapy. These interventions will improve understanding and implementation of genomic data in clinical practice.


Genome Research | 2010

Radiation pharmacogenomics: A genome-wide association approach to identify radiation response biomarkers using human lymphoblastoid cell lines

Nifang Niu; Yuxin Qin; Brooke L. Fridley; Junmei Hou; Krishna R. Kalari; Minjia Zhu; Tse Yu Wu; Gregory D. Jenkins; Anthony Batzler; Liewei Wang

Radiation therapy is used to treat half of all cancer patients. Response to radiation therapy varies widely among patients. Therefore, we performed a genome-wide association study (GWAS) to identify biomarkers to help predict radiation response using 277 ethnically defined human lymphoblastoid cell lines (LCLs). Basal gene expression levels and 1.3 million genome-wide single nucleotide polymorphism (SNP) markers from both Affymetrix and Illumina platforms were assayed for all 277 human LCLs. MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assays for radiation cytotoxicity were also performed to obtain area under the curve (AUC) as a radiation response phenotype for use in the association studies. Functional validation of candidate genes, selected from an integrated analysis that used SNP, expression, and AUC data, was performed with multiple cancer cell lines using specific siRNA knockdown, followed by MTS and colony-forming assays. A total of 27 loci, each containing at least two SNPs within 50 kb with P-values less than 10(-4) were associated with radiation AUC. A total of 270 expression probe sets were associated with radiation AUC with P < 10(-3). The integrated analysis identified 50 SNPs in 14 of the 27 loci that were associated with both AUC and the expression of 39 genes, which were also associated with radiation AUC (P < 10(-3)). Functional validation using siRNA knockdown in multiple tumor cell lines showed that C13orf34, MAD2L1, PLK4, TPD52, and DEPDC1B each significantly altered radiation sensitivity in at least two cancer cell lines. Studies performed with LCLs can help to identify novel biomarkers that might contribute to variation in response to radiation therapy and enhance our understanding of mechanisms underlying that variation.


Journal of Biological Chemistry | 2006

Human Arsenic Methyltransferase (AS3MT) Pharmacogenetics GENE RESEQUENCING AND FUNCTIONAL GENOMICS STUDIES

Thomas C. Wood; Oreste E. Salavagionne; Baidehi Mukherjee; Liewei Wang; Annette F. Klumpp; Bianca A. Thomae; Bruce W. Eckloff; Daniel J. Schaid; Eric D. Wieben; Richard M. Weinshilboum

Arsenic contaminates ground water worldwide. Methylation is an important reaction in the biotransformation of arsenic. We set out to study the pharmacogenetics of human arsenic methyltransferase (AS3MT, previously CYT19). After cloning the human AS3MT cDNA, we annotated the human gene and resequenced its 5′-flanking region, exons, and splice junctions using 60 DNA samples from African-American (AA) and 60 samples from Caucasian-American (CA) subjects. We observed 26 single nucleotide polymorphisms (SNPs), including 3 non-synonymous cSNPs, as well as a variable number of tandem repeats in exon 1 within an area encoding the cDNA 5′-untranslated region. The nonsynonymous cSNPs included T860C (M287T) with frequencies of 10.8 and 10% in AA and CA subjects, respectively, as well as C517T (A173W) in one AA and C917T (T306I) in one CA sample. Haplotype analysis showed that Ile306 was linked to Thr287, so this double variant allozyme was also studied functionally. After expression in COS-1 cells and correction for transfection efficiency, the Trp173 allozyme displayed 31%, Thr287 350%, Ile306 4.8%, and Thr287/Ile306 6.2% of the activity of the wild type (WT) allozyme, with 20, 190, 4.4, and 7.9% of the level of WT immunoreactive protein, respectively. Apparent Km values for S-adenosyl-l-methionine were 4.6, 3.1, and 11 μm for WT, Trp173, and Thr287 allozymes, with Km values for sodium arsenite with the same allozymes of 11.8, 8.9, and 4.5μm. The Ile306 and Thr287/Ile306 allozymes expressed too little activity for inclusion in the substrate kinetic studies. Expression of reporter gene constructs for the 5′-flanking region and the variable number of tandem repeats in the 5′-untranslated region demonstrated cell line-dependent variation in reporter gene expression, with shorter repeats associated with increased transcription in HepG2 cells. These results raise the possibility that inherited variation in AS3MT may contribute to variation in arsenic metabolism and, perhaps, arsenic-dependent carcinogenesis in humans.


The EMBO Journal | 2012

Sumoylation of MDC1 is important for proper DNA damage response

Kuntian Luo; Haoxing Zhang; Liewei Wang; Jian Yuan; Zhenkun Lou

In response to DNA damage, many DNA damage factors, such as MDC1 and 53BP1, redistribute to sites of DNA damage. The mechanism governing the turnover of these factors at DNA damage sites, however, remains enigmatic. Here, we show that MDC1 is sumoylated following DNA damage, and the sumoylation of MDC1 at Lys1840 is required for MDC1 degradation and removal of MDC1 and 53BP1 from sites of DNA damage. Sumoylated MDC1 is recognized and ubiquitinated by the SUMO‐targeted E3 ubiquitin ligase RNF4. Mutation of the MDC1 Lys 1840 (K1840R) results in impaired CtIP, replication protein A, and Rad51 accumulation at sites of DNA damage and defective homologous recombination (HR). The HR defect caused by MDC1K1840R mutation could be rescued by 53BP1 downregulation. These results reveal the intricate dynamics governing the assembly and disassembly of DNA damage factors at sites of DNA damage for prompt response to DNA damage.


Pharmacogenetics | 2003

Thiopurine S-methyltransferase pharmacogenetics: chaperone protein association and allozyme degradation.

Liewei Wang; William P. Sullivan; David O. Toft; Richard M. Weinshilboum

Thiopurine S-methyltransferase (TPMT) catalyses the S-methylation of thiopurine drugs such as 6-mercaptopurine. A common genetic polymorphism for TPMT is associated with large individual variations in thiopurine drug toxicity and therapeutic efficacy. TPMT*3A, the most common variant allele in Caucasians, has two alterations in amino acid sequence, resulting in striking decreases in TPMT protein levels. This phenomenon results, in part, from rapid degradation through a ubiquitin-proteasome-mediated process. We set out to test the hypothesis that chaperone proteins might be involved in targeting TPMT for degradation. As a first step, hsp90, hsp70 and the cochaperone hop were immunoprecipitated from a rabbit reticulocyte lysate (RRL) that included radioactively labelled *3A and wild-type TPMT. TPMT*3A was much more highly associated with all three chaperones than was the wild-type enzyme. The RRL was also used to confirm the accelerated degradation of *3A compared to wild-type TPMT. Treatment of RRL with the hsp90 inhibitor geldanamycin resulted in enhanced association of hsp90 with wild-type TPMT, an observation that correlated with accelerated ubiquitin-dependent degradation of wild-type TPMT. Geldanamycin treatment of COS-1 cells transfected with FLAG-tagged wild-type also resulted in a time and geldanamycin concentration-dependent decrease in TPMT activity and protein, which was compatible with results obtained in the RRL. These observations indicate that TPMT is a client protein for hsp90 and suggest that chaperone proteins, especially hsp90, are involved in targeting both TPMT*3A and, in the presence of geldanamycin, the wild-type allozyme for degradation. Therefore, chaperone proteins play an important mechanistic role in this clinically significant example of pharmacogenetic variation in drug metabolism.

Collaboration


Dive into the Liewei Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge