Lieze Rouffaer
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lieze Rouffaer.
Nature | 2017
Gwij Stegen; Frank Pasmans; Benedikt R. Schmidt; Lieze Rouffaer; Sarah Van Praet; Michael Schaub; Stefano Canessa; Arnaud Laudelout; Thierry Kinet; Connie Adriaensen; Freddy Haesebrouck; Wim Bert; Franky Bossuyt; An Martel
The recent arrival of Batrachochytrium salamandrivorans in Europe was followed by rapid expansion of its geographical distribution and host range, confirming the unprecedented threat that this chytrid fungus poses to western Palaearctic amphibians. Mitigating this hazard requires a thorough understanding of the pathogen’s disease ecology that is driving the extinction process. Here, we monitored infection, disease and host population dynamics in a Belgian fire salamander (Salamandra salamandra) population for two years immediately after the first signs of infection. We show that arrival of this chytrid is associated with rapid population collapse without any sign of recovery, largely due to lack of increased resistance in the surviving salamanders and a demographic shift that prevents compensation for mortality. The pathogen adopts a dual transmission strategy, with environmentally resistant non-motile spores in addition to the motile spores identified in its sister species B. dendrobatidis. The fungus retains its virulence not only in water and soil, but also in anurans and less susceptible urodelan species that function as infection reservoirs. The combined characteristics of the disease ecology suggest that further expansion of this fungus will behave as a ‘perfect storm’ that is able to rapidly extirpate highly susceptible salamander populations across Europe.
Scientific Reports | 2015
Mark Blooi; Frank Pasmans; Lieze Rouffaer; Freddy Haesebrouck; Francis Vercammen; An Martel
Chytridiomycosis caused by the chytrid fungus Batrachochytrium salamandrivorans (Bsal) poses a serious threat to urodelan diversity worldwide. Antimycotic treatment of this disease using protocols developed for the related fungus Batrachochytrium dendrobatidis (Bd), results in therapeutic failure. Here, we reveal that this therapeutic failure is partly due to different minimum inhibitory concentrations (MICs) of antimycotics against Bsal and Bd. In vitro growth inhibition of Bsal occurs after exposure to voriconazole, polymyxin E, itraconazole and terbinafine but not to florfenicol. Synergistic effects between polymyxin E and voriconazole or itraconazole significantly decreased the combined MICs necessary to inhibit Bsal growth. Topical treatment of infected fire salamanders (Salamandra salamandra), with voriconazole or itraconazole alone (12.5 μg/ml and 0.6 μg/ml respectively) or in combination with polymyxin E (2000 IU/ml) at an ambient temperature of 15 °C during 10 days decreased fungal loads but did not clear Bsal infections. However, topical treatment of Bsal infected animals with a combination of polymyxin E (2000 IU/ml) and voriconazole (12.5 μg/ml) at an ambient temperature of 20 °C resulted in clearance of Bsal infections. This treatment protocol was validated in 12 fire salamanders infected with Bsal during a field outbreak and resulted in clearance of infection in all animals.
Science of The Total Environment | 2018
Aimeric Teyssier; Lieze Rouffaer; Noraine Saleh Hudin; Diederik Strubbe; Erik Matthysen; Luc Lens; Joël White
Urbanisation represents one of the most radical forms of terrestrial land use change and has been shown to lead to alterations in ecosystem functioning and community dynamics and changes in individual phenotypic traits. While the recent surge in microbiome studies has brought about a paradigm shift by which individuals cannot truly be considered independently of the bacterial communities they host, the role of gut microbiota in organismal response to human-induced environmental change is still scarcely studied. Here, we applied a metabarcoding approach to examine the impact of urbanisation on the gut microbiota of Passer domesticus. We found urbanisation to be associated to lower microbiota species diversity, modifications in taxonomic composition and community structure, and changes in functional composition. The strength of these relationships, however, depended on the spatial scale and season at which they were considered. Such spatio-temporal effect suggests that urbanisation may dampen the natural seasonal variation of the gut microbiota observed in more pristine habitats, potentially influencing the fitness of urban organisms. Our results hence shed light on a hitherto little considered perspective, i.e. that the negative effects of urbanisation on city-dwelling organisms may extend to their microbiomes, causing potential dysbioses.
Journal of Parasitology | 2014
Lieze Rouffaer; Connie Adriaensen; C. De Boeck; Edwin Claerebout; An Martel
Abstract: Trichomonas gallinae, the cause of avian trichomonosis, is most commonly found in the order Columbiformes. Racing pigeons are often treated preventively with nitro-imidazoles, which could result in the emergence of resistant isolates, and these isolates can be a threat to wildlife when exchanges occur. The sequence type of 16 T. gallinae isolates obtained from racing pigeons and 15 isolates from wild pigeons was determined based on the ITS1/5.8S rRNA/ITS2 region sequence. In addition, the resistance profiles of these isolates against 5 different nitro-imidazoles (metronidazole, dimetridazole, ronidazole, tinidazole, and carnidazole) were determined. Two different Trichomonas sequence types were isolated. Sequence type A isolates were recovered from racing and wild pigeons, in contrast to sequence type B, which was only isolated from wild pigeons. Isolates with sequence type B were all susceptible to the tested nitro-imidazoles, except for tinidazole resistance in 3 isolates. Resistance to the nitro-imidazoles was observed more frequently in isolates obtained from racing pigeons than from wild pigeons, with most isolates belonging to sequence type A. A higher percentage of the sequence type A isolated from racing pigeons, in comparison with those isolated from the wild pigeons, were resistant to the nitro-imidazoles and displayed higher mean lethal concentration (MLC) values. Two isolates belonging to sequence type A, 1 recovered from a racing pigeon and 1 from a wild pigeon, displayed a similar resistance pattern, suggesting a potential exchange of resistant isolates between racing pigeons and wild pigeons.
PLOS ONE | 2017
Lieze Rouffaer; Kristof Baert; Anne-Marie Van den Abeele; Ivo Cox; Gerty Vanantwerpen; Lieven De Zutter; Diederik Strubbe; Katleen Vranckx; Luc Lens; Freddy Haesebrouck; Michel Delmée; Frank Pasmans; An Martel
Brown rats (Rattus norvegicus) have been identified as potential carriers of Yersinia enterocolitica and Y. pseudotuberculosis, the etiological agents of yersiniosis, the third most reported bacterial zoonosis in Europe. Enteropathogenic Yersinia spp. are most often isolated from rats during yersiniosis cases in animals and humans, and from rats inhabiting farms and slaughterhouses. Information is however lacking regarding the extent to which rats act as carriers of these Yersinia spp.. In 2013, 1088 brown rats across Flanders, Belgium, were tested for the presence of Yersinia species by isolation method. Identification was performed using MALDI-TOF MS, PCR on chromosomal- and plasmid-borne virulence genes, biotyping and serotyping. Yersinia spp. were isolated from 38.4% of the rats. Of these, 53.4% were designated Y. enterocolitica, 0.7% Y. pseudotuberculosis and 49.0% other Yersinia species. Two Y. enterocolitica possessing the virF-, ail- and ystA-gene were isolated. Additionally, the ystB-gene was identified in 94.1% of the other Y. enterocolitica isolates, suggestive for biotype 1A. Three of these latter isolates simultaneously possessed the ail-virulence gene. Significantly more Y. enterocolitica were isolated during winter and spring compared to summer. Based on our findings we can conclude that brown rats are frequent carriers for various Yersinia spp., including Y. pseudotuberculosis and (human pathogenic) Y. enterocolitica which are more often isolated during winter and spring.
PLOS ONE | 2015
Gunther Antonissen; Mathias Devreese; Siegrid De Baere; Tom Hellebuyck; Isabel Van de Maele; Lieze Rouffaer; Hendrickus Stemkens; Patrick De Backer; An Martel; Siska Croubels
The use of chemotherapeutics as a possible treatment strategy in avian oncology is steadily increasing over the last years. Despite this, literature reports regarding dosing strategies and pharmacokinetic behaviour of chemotherapeutics in avian species are lacking. The aim of the present study was to investigate the pharmacokinetics of carboplatin in a representative species of the order of Galliformes, Anseriformes, Columbiformes and Psittaciformes. Eight chickens, ducks and pigeons and twenty-eight parakeets were administered carboplatin intravenously (5 mg/kg body weight). A specific and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of the free carboplatin in plasma of the four birds species (limit of quantification: 20 ng/mL for chicken and duck, 50 ng/mL for pigeon and 100 ng/mL for parakeets). Non-compartmental pharmacokinetic analysis and allometric scaling demonstrated a significant correlation (R² = 0.9769) between body weight (BW) and elimination half-life (T1/2el). T1/2el ranged from 0.41 h in parakeets (BW: 61 ± 8 g) to 1.16 h chickens (BW: 1909 ± 619 g). T1/2el is a good parameter for dose optimization of carboplatin in other avian species, since also the previously reported T1/2el in cockatoos (average BW: 769 ± 68 g) of 1.00 h corresponds to the results obtained in the present study.
Journal of Wildlife Diseases | 2014
Lieze Rouffaer; Freddy Haesebrouck; An Martel
Abstract The presence of extended-spectrum &bgr;-lactamase– and Klebsiella pneumoniae carbapenemase–producing Enterobacteriaceae was investigated in feces and in choanal and cloacal swabs of birds in rescue centers. Ceftiofur-resistant Escherichia coli and Citrobacter freundii were isolated from feces of birds of prey (12% positive) and a group of gulls. The genes blaCTX-M-1, blaCTX-M-15, and blaCTX-M-32 coded for resistance.
PLOS ONE | 2016
Lieze Rouffaer; Luc Lens; Roel Haesendonck; Aimeric Teyssier; Noraine Salleh Hudin; Diederik Strubbe; Freddy Haesebrouck; Frank Pasmans; An Martel
In recent decades major declines in urban house sparrow (Passer domesticus) populations have been observed in north-western European cities, whereas suburban and rural house sparrow populations have remained relatively stable or are recovering from previous declines. Differential exposure to avian pathogens known to cause epidemics in house sparrows may in part explain this spatial pattern of declines. Here we investigate the potential effect of urbanization on the development of a bacterial pathogen reservoir in free-ranging house sparrows. This was achieved by comparing the prevalence of Salmonella enterica subspecies enterica serotype Typhimurium in 364 apparently healthy house sparrows captured in urban, suburban and rural regions across Flanders, Belgium between September 2013 and March 2014. In addition 12 dead birds, received from bird rescue centers, were necropsied. The apparent absence of Salmonella Typhimurium in fecal samples of healthy birds, and the identification of only one house sparrow seropositive for Salmonella spp., suggests that during the winter of 2013–2014 these birds did not represent any considerable Salmonella Typhimurium reservoir in Belgium and thus may be considered naïve hosts, susceptible to clinical infection. This susceptibility is demonstrated by the isolation of two different Salmonella Typhimurium strains from two of the deceased house sparrows: one DT99, typically associated with disease in pigeons, and one DT195, previously associated with a passerine decline. The apparent absence (prevalence: <1.3%) of a reservoir in healthy house sparrows and the association of infection with clinical disease suggests that the impact of Salmonella Typhimurium on house sparrows is largely driven by the risk of exogenous exposure to pathogenic Salmonella Typhimurium strains. However, no inference could be made on a causal relationship between Salmonella infection and the observed house sparrow population declines.
PLOS ONE | 2017
Roschong Boonyarittichaikij; Elin Verbrugghe; Daan Dekeukeleire; R. De Beelde; Lieze Rouffaer; Roel Haesendonck; Diederik Strubbe; Wesley Mattheus; Sophie Bertrand; Frank Pasmans; Dries Bonte; Kris Verheyen; Luc Lens; An Martel
Endemic infections with the common avian pathogen Salmonella enterica subspecies enterica serovar Typhimurium (Salmonella Typhimurium) may incur a significant cost on the host population. In this study, we determined the potential of endemic Salmonella infections to reduce the reproductive success of blue (Cyanistes caeruleus) and great (Parus major) tits by correlating eggshell infection with reproductive parameters. The fifth egg of each clutch was collected from nest boxes in 19 deciduous forest fragments. Out of the 101 sampled eggs, 7 Salmonella Typhimurium isolates were recovered. The low bacterial prevalence was reflected by a similarly low serological prevalence in the fledglings. In this study with a relatively small sample size, presence of Salmonella did not affect reproductive parameters (egg volume, clutch size, number of nestlings and number of fledglings), nor the health status of the fledglings. However, in order to clarify the impact on health and reproduction a larger number of samples have to be analyzed. Phage typing showed that the isolates belonged to the definitive phage types (DT) 193 and 99, and multi-locus variable number tandem repeat analysis (MLVA) demonstrated a high similarity among the tit isolates, but distinction to human isolates. These findings suggest the presence of passerine-adapted Salmonella strains in free-ranging tit populations with host pathogen co-existence.
PLOS ONE | 2018
Roschong Boonyarittichaikij; Elin Verbrugghe; Daan Dekeukeleire; Diederik Strubbe; Sarah Van Praet; Robbe De Beelde; Lieze Rouffaer; Frank Pasmans; Dries Bonte; Kris Verheyen; Luc Lens; An Martel
The hatching success of a bird’s egg is one of the key determinants of avian reproductive success, which may be compromised by microbial infections causing embryonic death. During incubation, outer eggshell bacterial communities pose a constant threat of pathogen translocation and embryo infection. One of the parental strategies to mitigate this threat is the incorporation of maternal immune factors into the egg albumen and yolk. It has been suggested that habitat changes like forest fragmentation can affect environmental factors and life-history traits that are linked to egg contamination. This study aims at investigating relationships between microbial pressure, immune investment and hatching success in two abundant forest bird species and analyzing to what extent these are driven by extrinsic (environmental) factors. We here compared (1) the bacterial load and composition on eggshells, (2) the level of immune defenses in eggs, and (3) the reproductive success between great (Parus major) and blue (Cyanistes caeruleus) tits in Belgium and examined if forest fragmentation affects these parameters. Analysis of 70 great tit and 34 blue tit eggshells revealed a similar microbiota composition (Enterobacteriaceae, Lactobacillus spp., Firmicutes and Bacteroidetes), but higher bacterial loads in great tits. Forest fragmentation was not identified as an important explanatory variable. Although a significant negative correlation between hatching success and bacterial load on the eggshells in great tits corroborates microbial pressure to be a driver of embryonic mortality, the overall hatching success was only marginally lower than in blue tits. This may be explained by the significantly higher levels of lysozyme and IgY in the eggs of great tits, protecting the embryo from increased infection pressure. Our results show that immune investment in eggs is suggested to be a species-specific adaptive trait that serves to protect hatchlings from pathogen pressure, which is not directly linked to habitat fragmentation.