Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liezhen Fu is active.

Publication


Featured researches published by Liezhen Fu.


Molecular and Cellular Biology | 2004

Transgenic Analysis Reveals that Thyroid Hormone Receptor Is Sufficient To Mediate the Thyroid Hormone Signal in Frog Metamorphosis

Daniel R. Buchholz; Akihiro Tomita; Liezhen Fu; Bindu D. Paul; Yun Bo Shi

ABSTRACT Thyroid hormone (T3) has long been known to be important for vertebrate development and adult organ function. Whereas thyroid hormone receptor (TR) knockout and transgenic studies of mice have implicated TR involvement in mammalian development, the underlying molecular bases for the resulting phenotypes remain to be determined in vivo, especially considering that T3 is known to have both genomic, i.e., through TRs, and nongenomic effects on cells. Amphibian metamorphosis is an excellent model for studying the role of TR in vertebrate development because of its total dependence on T3. Here we investigated the role of TR in metamorphosis by developing a dominant positive mutant thyroid hormone receptor (dpTR). In the frog oocyte transcription system, dpTR bound a T3-responsive promoter and activated the promoter independently of T3. Transgenic expression of dpTR under the control of a heat shock-inducible promoter in premetamorphic tadpoles led to precocious metamorphic transformations. Molecular analyses showed that dpTR induced metamorphosis by specifically binding to known T3 target genes, leading to increased local histone acetylation and gene activation, similar to T3-bound TR during natural metamorphosis. Our experiments indicated that the metamorphic role of T3 is through genomic action of the hormone, at least on the developmental parameters tested. They further provide the first example where TR is shown to mediate directly and sufficiently these developmental effects of T3 in individual organs by regulating target gene expression in these organs.


Molecular and Cellular Biology | 2003

A Dominant-Negative Thyroid Hormone Receptor Blocks Amphibian Metamorphosis by Retaining Corepressors at Target Genes

Daniel R. Buchholz; Shao-Chung Victor Hsia; Liezhen Fu; Yun-Bo Shi

ABSTRACT The total dependence of amphibian metamorphosis on thyroid hormone (T3) provides a unique vertebrate model for studying the molecular mechanism of T3 receptor (TR) function in vivo. In vitro transcription and developmental expression studies have led to a dual function model for TR in amphibian development, i.e., TRs act as transcriptional repressors in premetamorphic tadpoles and as activators during metamorphosis. We examined molecular mechanisms of TR action in T3-induced metamorphosis by using dominant-negative receptors (dnTR) ubiquitously expressed in transgenic Xenopus laevis. We showed that T3-induced activation of T3 target genes and morphological changes are blocked in dnTR transgenic animals. By using chromatin immunoprecipitation, we show that dnTR bound to target promoters, which led to retention of corepressors and continued histone deacetylation in the presence of T3. These results thus provide direct in vivo evidence for the first time for a molecular mechanism of altering gene expression by a dnTR. The correlation between dnTR-mediated gene repression and inhibition of metamorphosis also supports a key aspect of the dual function model for TR in development: during T3-induced metamorphosis, TR functions as an activator via release of corepressors and promotion of histone acetylation and gene activation.


The FASEB Journal | 2009

Origin of the adult intestinal stem cells induced by thyroid hormone in Xenopus laevis

Atsuko Ishizuya-Oka; Takashi Hasebe; Daniel R. Buchholz; Mitsuko Kajita; Liezhen Fu; Yun-Bo Shi

In the amphibian intestine during metamorphosis, de novo stem cells generate the adult epithelium analogous to the mammalian counterpart. Interestingly, to date the exact origin of these stem cells remains to be determined, making intestinal metamorphosis a unique model to study development of adult organ‐specific stem cells. Here, to determine their origin, we made use of transgenic Xenopus tadpoles expressing green fluorescent protein (GFP) for recombinant organ cultures. The larval epithelium separated from the wild‐type (Wt) or GFP transgenic (Tg) intestine before metamorphic climax was recombined with homologous and heterologous nonepithelial tissues and was cultivated in the presence of thyroid hormone, the causative agent of metamorphosis. In all kinds of recombinant intestine, adult progenitor cells expressing markers for intestinal stem cells such as sonic hedgehog became detectable and then differentiated into the adult epithelium expressing intestinal fatty acid binding‐protein, a marker for absorptive cells. Notably, whenever the epithelium was derived from Tg intestine, both the adult progenitor/stem cells and their differentiated cells expressed GFP, whereas neither of them expressed GFP in the Wt‐derived epithelium. Our results provide direct evidence that stem cells that generate the adult intestinal epithelium originate from the larval epithelium, through thyroid hormone‐induced dedifferentiation.— Ishizuya‐Oka, A.,Hasebe, T., Buchholz, D. R., Kajita, M., Fu, L., Shi, Y.‐B. The origin of the adult intestinal stem cells induced by thyroid hormone in Xenopus laevis. FASEB J. 23, 2568–2575 (2009)


Journal of Biological Chemistry | 2005

A Causative Role of Stromelysin-3 in Extracellular Matrix Remodeling and Epithelial Apoptosis during Intestinal Metamorphosis in Xenopus laevis

Liezhen Fu; Atsuko Ishizuya-Oka; Daniel R. Buchholz; Tosikazu Amano; Hiroki Matsuda; Yun-Bo Shi

The matrix metalloproteinases are a family of proteases capable of degrading various components of the extracellular matrix. Expression studies have implicated the involvement of the matrix metalloproteinase stromelysin-3 (ST3) in tissue remodeling and pathogenesis. However, the in vivo role of ST3 has been difficult to study because of a lack of good animal models. Here we used intestinal remodeling during thyroid hormone-dependent metamorphosis of Xenopus laevis as a model to investigate in vivo the role of ST3 during postembryonic organ development in vertebrates. We generated transgenic tadpoles expressing ST3 under control of a heat shock-inducible promoter. We showed for the first time in vivo that wild type ST3 but not a catalytically inactive mutant was sufficient to induce larval epithelial cell death and fibroblast activation, events that normally occur only in the presence of thyroid hormone. We further demonstrated that these changes in cell fate are associated with altered gene expression in the intestine and remodeling of the intestinal basal lamina. These results thus suggest that ST3 regulates cell fate and tissue morphogenesis through direct or indirect ECM remodeling.


Molecular and Cellular Biology | 2005

Coactivator Recruitment Is Essential for Liganded Thyroid Hormone Receptor To Initiate Amphibian Metamorphosis

Bindu D. Paul; Liezhen Fu; Daniel R. Buchholz; Yun Bo Shi

ABSTRACT Thyroid hormone receptors (TRs) can repress or activate target genes depending on the absence or presence of thyroid hormone (T3), respectively. This hormone-dependent gene regulation is mediated by recruitment of corepressors in the absence of T3 and coactivators in its presence. Many TR-interacting coactivators have been characterized in vitro. In comparison, few studies have addressed the developmental roles of these cofactors in vivo. We have investigated the role of coactivators in transcriptional activation by TR during postembryonic tissue remodeling by using amphibian metamorphosis as a model system. We have previously shown that steroid receptor coactivator 3 (SRC3) is expressed and upregulated during metamorphosis, suggesting a role in gene regulation by liganded TR. Here, we have generated transgenic tadpoles expressing a dominant negative form of SRC3 (F-dnSRC3). The transgenic tadpoles exhibited normal growth and development throughout embryogenesis and premetamorphic stages. However, transgenic expression of F-dnSRC3 inhibits essentially all aspects of T3-induced metamorphosis, as well as natural metamorphosis, leading to delayed or arrested metamorphosis or the formation of tailed frogs. Molecular analysis revealed that F-dnSRC3 functioned by blocking the recruitment of endogenous coactivators to T3 target genes without affecting corepressor release, thereby preventing the T3-dependent gene regulation program responsible for tissue transformations during metamorphosis. Our studies thus demonstrate that coactivator recruitment, aside from corepressor release, is required for T3 function in development and further provide the first example where a specific coactivator-dependent gene regulation pathway by a nuclear receptor has been shown to underlie specific developmental events.


Cell & Bioscience | 2011

The development of the adult intestinal stem cells: Insights from studies on thyroid hormone-dependent amphibian metamorphosis

Yun-Bo Shi; Takashi Hasebe; Liezhen Fu; Kenta Fujimoto; Atsuko Ishizuya-Oka

Adult organ-specific stem cells are essential for organ homeostasis and repair in adult vertebrates. The intestine is one of the best-studied organs in this regard. The intestinal epithelium undergoes constant self-renewal throughout adult life across vertebrates through the proliferation and subsequent differentiation of the adult stem cells. This self-renewal system is established late during development, around birth, in mammals when endogenous thyroid hormone (T3) levels are high. Amphibian metamorphosis resembles mammalian postembryonic development around birth and is totally dependent upon the presence of high levels of T3. During this process, the tadpole intestine, predominantly a monolayer of larval epithelial cells, undergoes drastic transformation. The larval epithelial cells undergo apoptosis and concurrently, adult epithelial stem/progenitor cells develop de novo, rapidly proliferate, and then differentiate to establish a trough-crest axis of the epithelial fold, resembling the crypt-villus axis in the adult mammalian intestine. We and others have studied the T3-dependent remodeling of the intestine in Xenopus laevis. Here we will highlight some of the recent findings on the origin of the adult intestinal stem cells. We will discuss observations suggesting that liganded T3 receptor (TR) regulates cell autonomous formation of adult intestinal progenitor cells and that T3 action in the connective tissue is important for the establishment of the stem cell niche. We will further review evidence suggesting similar T3-dependent formation of adult intestinal stem cells in other vertebrates.


Journal of Biological Chemistry | 2007

SRC-p300 Coactivator Complex Is Required for Thyroid Hormone-induced Amphibian Metamorphosis

Bindu D. Paul; Daniel R. Buchholz; Liezhen Fu; Yun Bo Shi

Gene activation by the thyroid hormone (T3) receptor (TR) involves the recruitment of specific coactivator complexes to T3-responsive promoters. A large number of coactivators for TR have been isolated and characterized in vitro. However, their roles and functions in vivo during development have remained largely unknown. We have utilized metamorphosis in Xenopus laevis to study the role of these coactivators during post-embryonic development. Metamorphosis is totally dependent on the thyroid hormone, and TR mediates a vast majority, if not all, of the developmental effects of the hormone. We have previously shown that TR recruits the coactivator SRC3 (steroid receptor coactivator-3) and that coactivator recruitment is essential for metamorphosis. To determine whether SRCs are indeed required, we have analyzed the in vivo role of the histone acetyltransferase p300/CREB-binding protein (CBP), which was reported to be a component of the SRC·coactivator complexes. Chromatin immunoprecipitation revealed that p300 is recruited to T3-responsive promoters, implicating a role of p300 in TR function. Further, transgenic tadpoles overexpressing a dominant negative form of p300, F-dnp300, containing only the SRC-interacting domain, displayed arrested or delayed metamorphosis. Molecular analyses of the transgenic F-dnp300 animals showed that F-dnp300 was recruited by TR (displacing endogenous p300) and inhibited the expression of T3-responsive genes. Our results thus suggest that p300 and/or its related CBP is an essential component of the TR-signaling pathway in vivo and support the notion that p300/CBP and SRC proteins are part of the same coactivator complex in vivo during post-embryonic development.


Journal of Biological Chemistry | 2006

Transcriptional Regulation of the Xenopus laevis Stromelysin-3 Gene by Thyroid Hormone Is Mediated by a DNA Element in the First Intron

Liezhen Fu; Akihiro Tomita; Hua Wang; Daniel R. Buchholz; Yun-Bo Shi

The matrix metalloproteinase (MMP) stromelysin-3 (ST3) (MMP11) was first isolated as a breast cancer-associated gene and is expressed in diverse human carcinomas and various developmental processes involving apoptosis. The Xenopus laevis ST3 is highly up-regulated by thyroid hormone (T3) during amphibian metamorphosis, and its expression is spatially and temporally correlated with apoptosis in different tissues. Furthermore, it has been shown in vivo and in organ cultures to play a critical role in regulating T3-induced epithelial cell death during intestinal metamorphosis. Earlier studies suggest that ST3 is a direct T3 response gene, although a thyroid hormone response element (TRE) was not found in the initial analysis of the ST3 promoter. Here, we have identified a strong TRE consisting of two nearly perfect direct repeats of the consensus nuclear hormone receptor binding element AGGTCA separated by 4 bp in the first intron of the Xenopus ST3 gene. We show that the heterodimers of T3 receptor (TR) and 9-cis-retinoic acid receptor bind to the TRE both in vitro and in vivo in the context of chromatin. Furthermore, T3 induces strong activation of the promoter through the intronic TRE. Interestingly, although the unliganded TR/9-cis-retinoic acid receptor was able to recruit corepressors to the promoter, it had little repressive effect on the promoter in vivo. These results suggest that the intronic TRE mediates the inductive effect of T3 and that promoter context plays an important role in gene repression by unliganded TR.


Cell & Bioscience | 2012

Thyroid hormone receptor actions on transcription in amphibia: The roles of histone modification and chromatin disruption

Yun-Bo Shi; Kazuo Matsuura; Kenta Fujimoto; Luan Wen; Liezhen Fu

Thyroid hormone (T3) plays diverse roles in adult organ function and during vertebrate development. The most important stage of mammalian development affected by T3 is the perinatal period when plasma T3 level peaks. Amphibian metamorphosis resembles this mammalian postembryonic period and is absolutely dependent on T3. The ability to easily manipulate this process makes it an ideal model to study the molecular mechanisms governing T3 action during vertebrate development. T3 functions mostly by regulating gene expression through T3 receptors (TRs). Studies in vitro, in cell cultures and reconstituted frog oocyte transcription system have revealed that TRs can both activate and repress gene transcription in a T3-dependent manner and involve chromatin disruption and histone modifications. These changes are accompanied by the recruitment of diverse cofactor complexes. More recently, genetic studies in mouse and frog have provided strong evidence for a role of cofactor complexes in T3 signaling in vivo. Molecular studies on amphibian metamorphosis have also revealed that developmental gene regulation by T3 involves histone modifications and the disruption of chromatin structure at the target genes as evidenced by the loss of core histones, arguing that chromatin remodeling is an important mechanism for gene activation by liganded TR during vertebrate development.


PLOS ONE | 2010

Spatio-Temporal Expression Profile of Stem Cell- Associated Gene LGR5 in the Intestine during Thyroid Hormone-Dependent Metamorphosis in Xenopus laevis

Guihong Sun; Takashi Hasebe; Kenta Fujimoto; Rosemary Lu; Liezhen Fu; Hiroki Matsuda; Mitsuko Kajita; Atsuko Ishizuya-Oka; Yun-Bo Shi

Background The intestinal epithelium undergoes constant self-renewal throughout adult life across vertebrates. This is accomplished through the proliferation and subsequent differentiation of the adult stem cells. This self-renewal system is established in the so-called postembryonic developmental period in mammals when endogenous thyroid hormone (T3) levels are high. Methodology/Principal Findings The T3-dependent metamorphosis in anurans like Xenopus laevis resembles the mammalian postembryonic development and offers a unique opportunity to study how the adult stem cells are developed. The tadpole intestine is predominantly a monolayer of larval epithelial cells. During metamorphosis, the larval epithelial cells undergo apoptosis and, concurrently, adult epithelial stem/progenitor cells develop de novo, rapidly proliferate, and then differentiate to establish a trough-crest axis of the epithelial fold, resembling the crypt-villus axis in the adult mammalian intestine. The leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) is a well-established stem cell marker in the adult mouse intestinal crypt. Here we have cloned and analyzed the spatiotemporal expression profile of LGR5 gene during frog metamorphosis. We show that the two duplicated LGR5 genes in Xenopus laevis and the LGR5 gene in Xenopus tropicalis are highly homologous to the LGR5 in other vertebrates. The expression of LGR5 is induced in the limb, tail, and intestine by T3 during metamorphosis. More importantly, LGR5 mRNA is localized to the developing adult epithelial stem cells of the intestine. Conclusions/Significance These results suggest that LGR5-expressing cells are the stem/progenitor cells of the adult intestine and that LGR5 plays a role in the development and/or maintenance of the adult intestinal stem cells during postembryonic development in vertebrates.

Collaboration


Dive into the Liezhen Fu's collaboration.

Top Co-Authors

Avatar

Yun-Bo Shi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Hasebe

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kenta Fujimoto

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Luan Wen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Biswajit Das

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tosikazu Amano

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bindu D. Paul

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kazuo Matsuura

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge