Lígia L. Pimentel
University of Aveiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lígia L. Pimentel.
Critical Reviews in Food Science and Nutrition | 2017
Ana L. Fontes; Lígia L. Pimentel; Catarina D. Simões; Ana Gomes; Luis Miguel Rodríguez-Alcalá
ABSTRACT Conjugated alpha linolenic acid (CLNA) isomers are promising lipids owing to their similarities with conjugated linoleic acid (CLA) but exerting their bioactivity at lower doses; some isomers also belong to omega 3 family. This review aims to summarize the state of the art about the utilization of CLNA as a functional ingredient. Indeed, in vitro and in vivo studies reported that CLNA exerted anticancer, anti-inflammatory, anti-obese, and antioxidant activities. However, CLNA has not been tested in humans. These compounds are naturally present in meat and milk fat from ruminants but the highest concentrations are found in vegetable oils. Their incorporation in foodstuffs is one of the most effective strategies to elaborate CLNA-enriched products together with the microbiological production. Lactobacilli, propionibacteria, and bifidobacteria strains have been assayed to produce CLNA isomers but at the current moment there are not high CLNA concentration products elaborated using these strains. Furthermore, it is known that CLNA isomers are highly prone to oxidation when compared with linoleic acid and CLA, but the possible effects of elaboration and storage on high CLNA productsare unknown.The utilization of CLNA as a functional compound still remains a challenge and requires more research to address all of its technological and bioactivity aspects.
Journal of Automated Methods & Management in Chemistry | 2016
Lígia L. Pimentel; Ana Gomes; Manuela Pintado; Luis Miguel Rodríguez-Alcalá
The lipid fraction of milk is one of the most complex matrixes in foodstuffs due to the presence of a high number of moieties with different physical and chemical properties. Glycerolipids include glycerol and two fatty acids esterified in positions sn-1 and sn-2 with higher concentration of unsaturated fatty acids than in the triglyceride fraction of milk. Sphingolipids consist of a sphingoid base linked to a fatty acid across an amide bond. Their amphiphilic nature makes them suitable to be added into a variety of foods and recent investigations show that phospholipids, mainly phosphatidylserine and sphingomyelin, can exert antimicrobial, antiviral, and anticancer activities as well as positive effects in Alzheimers disease, stress, and memory decline. Polar lipids can be found as natural constituents in the membranes of all living organisms with soybean and eggs as the principal industrial sources, yet they have low contents in phosphatidylserine and sphingomyelin. Animal products are rich sources of these compounds but since there are legal restrictions to avoid transmission of prions, milk and dairy products are gaining interest as alternative sources. This review summarizes the analysis of polar lipids in dairy products including sample preparation (extraction and fractionation/isolation) and analysis by GC or HPLC and the latest research works using ELSD, CAD, and MS detectors.
Bioscience Reports | 2017
Luis Miguel Rodríguez-Alcalá; M. Pilar Castro-Gómez; Lígia L. Pimentel; Javier Fontecha
During many years, the milk fat has been unfairly undervalued due to its association with higher levels of cardiovascular diseases, dyslipidaemia or obesity, among others. However, currently, this relationship is being re-evaluated because some of the dairy lipid components have been attributed potential health benefits. Due to this, and based on the increasing incidence of cancer in our society, this review work aims to discuss the state of the art concerning scientific evidence of milk lipid components and reported anticancer properties. Results from the in vitro and in vivo experiments suggest that specific fatty acids (FA) (as butyric acid and conjugated linoleic acid (CLA), among others), phospholipids and sphingolipids from milk globule membrane are potential anticarcinogenic agents. However, their mechanism of action remains still unclear due to limited and inconsistent findings in human studies.
International Journal of Systematic and Evolutionary Microbiology | 2017
Cláudia Covas; Tânia Caetano; Andreia Cruz; Tiago Santos; Liliana Dias; Guenter Klein; Amir Abdulmawjood; Luis Miguel Rodríguez-Alcalá; Lígia L. Pimentel; Ana Gomes; Ana C. Freitas; Alba M. García-Serrano; Javier Fontecha; Sónia Mendo
Strain NL19T is a Gram-stain-negative, aerobic bacterium that was isolated from sludge of a deactivated uranium mine in Portugal. 16S rRNA gene sequence analysis revealed that strain NL19T is a member of the genus Pedobacter and closely related to the strains Pedobacter himalayensis MTCC 6384T, Pedobacter cryoconitis DSM 14825T, Pedobacter westerhofensis DSM 19036T and Pedobacterhartonius DSM 19033T. It had a DNA G+C content of 40.8 mol%, which agreed with the genus description. The main fatty acids included C16 : 1ω7c, C14 : 1ω5c, C4 : 0, iso-C17 : 0, iso-C17 : 0 3-OH, C16 : 0, anteiso-C15 : 0 and iso-C15 : 0 3-OH. The main lipids present were phospholipids (60 %) and sphingolipids (35 %). The most abundant phospholipids included phosphatidylethanolamine, phosphatidylinositol and phosphatidylcholine. Menaquinone-7 (MK-7) was the only isoprenoid quinone detected. DNA-DNA hybridization similarities between strain NL19T and Pedobacter himalayensis MTCC 6384T, Pedobacter cryoconitis DSM 14825T, Pedobacter westerhofensis DSM 19036T and Pedobacter hartonius DSM 19033T were 15.3 , 16.2 , 11.5 and 16.0 %, respectively. Strain NL19T can also be distinguished from these four species based on gyrB and intergenic transcribed spacers (ITS) sequences and by some phenotypic traits such as NaCl tolerance, pH, growth temperature and carbon source utilization. Strain NL19Trepresents a novel species of the genus Pedobacter, for which the name Pedobacter lusitanus sp. nov. is proposed. The type strain is NL19T (=LMG 29220T=CECT 9028T). An amended description of Pedobacter himalayensis is also included.
MethodsX | 2015
Lígia L. Pimentel; Ana L. Fontes; Ana Gomes; Luis Miguel Rodríguez-Alcalá
Graphical abstract In situ derivatization to methyl esters (FAME) and fractionation of EFA and NEFA.
Scientific Reports | 2018
Ana L. Fontes; Lígia L. Pimentel; Luis Miguel Rodríguez-Alcalá; Ana Gomes
Current research on lipids is highlighting their relevant role in metabolic/signaling pathways. Conjugated fatty acids (CFA), namely isomers of linoleic and linolenic acid (i.e. CLA and CLNA, respectively) can positively modulate inflammation processes and energy metabolism, promoting anti-carcinogenic and antioxidant effects, improved lipid profiles and insulin resistance, among others. Bioactive doses have been indicated to be above 1 g/d, yet these cannot be achieved through a moderate intake (i.e. 1–2 servings) of natural sources, and certain CLA-containing products have limited commercial availability. Such handicaps have fueled research interest in finding alternative fortification strategies. In recent years, screening of dairy products for CFA-producing bacteria has attracted much attention and has led to the identification of some promising strains, including Bifidobacterium breve NCIMB 702258. This strain has shown interesting producing capabilities in model systems as well as positive modulation of lipid metabolism activities in animal studies. Accordingly, the aim of this research work was to assay B. breve NCIMB 702258 in semi-skimmed milk to produce a probiotic fermented dairy product enriched in bioactive CLA and CLNA. The effect of substrates (LA, α-LNA and γ-LNA) on growth performance and membrane fatty acids profile was also studied, as these potential modifications have been associated to stress response. When tested in cys-MRS culture medium, LA, α-LNA and γ-LNA impaired the fatty acid synthesis by B. breve since membrane concentrations for stearic and oleic acids decreased. Variations in the C18:1 c11 and lactobacillic acid concentrations, may suggest that these substrates are also affecting the membrane fluidity. Bifidobacterium breve CFA production capacity was first assessed in cys-MRS with LA, α-LNA, γ-LNA or all substrates together at 0.5 mg/mL each. This strain did not produce CFA from γ-LNA, but converted 31.12% of LA and 68.20% of α-LNA into CLA and CLNA, respectively, after incubation for 24 h at 37 °C. In a second phase, B. breve was inoculated in a commercial semi-skimmed milk with LA, α-LNA or both at 0.5 mg/mL each. Bifidobacterium breve revealed a limited capacity to synthesize CLA isomers, but was able to produce 0.062–0.115 mg/mL CLNA after 24 h at 37 °C. However, organoleptic problems were reported which need to be addressed in future studies. These results show that although CFA were produced at too low concentrations to be able to achieve solely the bioactive dose in one daily portion size, fermented dairy products are a suitable vector to deliver B. breve NCIMB 702258.
Electrophoresis | 2018
Lígia L. Pimentel; Ana L. Fontes; Sofia Salsinha; Manuela Machado; Inês Correia; Ana Gomes; Manuela Pintado; Luis Miguel Rodríguez-Alcalá
Lipids are gaining relevance over the last 20 years, as our knowledge about their role has changed from merely energy/structural molecules to compounds also involved in several biological processes. This led to the creation in 2003 of a new emerging research field: lipidomics. In particular the phospholipids have pharmacological/food applications, participate in cell signalling/homeostatic pathways while their analysis faces some challenges. Their fractionation/purification is, in fact, especially difficult, as they are amphiphilic compounds. Moreover, it usually involves SPE or TLC procedures requiring specific materials hampering their suitableness for routine analysis. Finally, they can interfere with the ionization of other molecules during mass spectrometry analysis. Thus, simple high‐throughput reliable methods to selectively isolate these compounds based on the difference between chemical characteristics of lipids would represent valuable tools for their study besides that of other compounds. The current review work aims to describe the state‐of‐the‐art related to the extraction of phospholipids using liquid‐liquid methods for their targeted isolation. The technological and biological importance of these compounds and ion suppression phenomena are also reviewed. Methods by precipitation with acetone or isolation using methanol seem to be suitable for selective isolation of phospholipids in both biological and food samples.
Archive | 2013
Lígia L. Pimentel; Luis Miguel Rodríguez-Alcalá; Ana Gomes; Ana C. Freitas
Enzymes are used as biomarkers of specific cellular damage of some organs. This article attempts to address the most important enzymes associated with heart diseases, liver, pancreas, and neuromuscular damage and also the cellular signaling of inflammation of adipose tissue. Some of the enzymes acting as diagnostic biomarkers are lactate dehydrogenase, creatine kinase, aspartate aminotransferase, aldolase, carbonic anhydrase, and alpha-amylase while leptin and asprosin are key markers for adipose tissue inflammation. Evolution and limitations of using enzymes as serum biomarkers are discussed. The methods usually used to determine enzymes as biomarkers as well as their reference values are also described.
Journal of Food Protection | 2007
Lígia L. Pimentel; Teresa Semedo; Rogério Tenreiro; M. Teresa B. Crespo; Maria Manuela Pintado; F. Xavier Malcata
Journal of Agricultural and Food Chemistry | 2015
Luis Miguel Rodríguez-Alcalá; Carla Sá; Lígia L. Pimentel; Diogo Pestana; Diana Teixeira; Ana Faria; Conceição Calhau; Ana Gomes