Ligy Philip
Indian Institute of Technology Madras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ligy Philip.
Journal of Hazardous Materials | 2008
K. Rama Krishna; Ligy Philip
Adsorption and desorption characteristics of three insecticides on four Indian soils were studied. Insecticides used were representative of organochlorine, organophosphate, and carbomate groups. The order of adsorption of pesticides on soils was: lindane>methyl parathion>carbofuran. Compost soil had shown the maximum adsorption capacity. The order of adsorption capacity of various soils were: compost soil>clayey soil>red soil>sandy soil. Adsorption isotherms were better fitted to Freundlich model and Kf values increased with increase in organic matter content of the soils. Thermodynamic parameters indicated favorable adsorption of all the three pesticides in four different soils. Adsorption was exothermic in nature. Distilled water desorbed 30-60% of adsorbed pesticides whereas; organic solvents were able to affect 50-80% of sorbed pesticides. Clay content and organic matter played a significant role in pesticide adsorption and desorption processes. Hysteresis effect was observed in red, clayey and compost soils. Hysteresis effect increased with increase in organic matter and clay content of the soils.
Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2006
Mathava Kumar; Ligy Philip
In the present study, we isolated three novel bacterial species, namely, Staphylococcus sp., Bacillus circulans–I, and Bacillus circulans–II, from contaminated soil collected from the premises of a pesticide manufacturing industry. Batch experiments were conducted using both mixed and pure cultures to assess their potential for the degradation of aqueous endosulfan in aerobic and facultative anaerobic condition. The influence of supplementary carbon (dextrose) source on endosulfan degradation was also examined. After four weeks of incubation, mixed bacterial culture was able to degrade 71.82 ± 0.2% and 76.04 ± 0.2% of endosulfan in aerobic and facultative anaerobic conditions, respectively, with an initial endosulfan concentration of 50 mg l−1. Addition of dextrose to the system amplified the endosulfan degradation efficiency by 13.36 ± 0.6% in aerobic system and 12.33 ± 0.6% in facultative anaerobic system. Pure culture studies were carried out to quantify the degradation potential of these individual species. Among the three species, Staphylococcus sp. utilized more beta endosulfan compared to alpha endosulfan in facultative anaerobic system, whereas Bacillus circulans–I and Bacillus circulans–II utilized more alpha endosulfan compared to beta endosulfan in aerobic system. In any of these degradation studies no known intermediate metabolites of endosulfan were observed.
Bioresource Technology | 2012
Naresh K. Sharma; Ligy Philip; S. Murty Bhallamudi
Present study focused on the degradation of a mixture of phenol, cresol, xylenol, quinoline, and indole along with cyanide, commonly found in coke oven wastewater, using aerobic mixed culture. It was found that xylenol and indole were difficult to degrade, when the concentrations were above 250 mg/L. It was observed that free cyanide (2.5mg/L and above) has the potency to holdup the oxidation of organics (250 mg/L) until the cyanide concentration drops to a minimum level. Final TOC in the mixed pollutant system was less than 4 mg/L, indicating the absence of other organic byproducts. Experimental results highlight effect of free cyanide on removal of organics and the combined toxic influence of cyanide and organics on the microbes treating coking wastewater. The proposed mathematical model was able to predict the biodegradation of mixed pollutant system satisfactorily.
Environment International | 2016
Tarun Anumol; Arya Vijayanandan; Minkyu Park; Ligy Philip; Shane A. Snyder
The presence of pharmaceuticals, hormones, pesticides and industrial contaminants collectively termed as trace organic compounds (TOrCs) in wastewater has been well-documented in USA, Europe, China and other regions. However, data from India, the second most populous country in the world is severely lacking. This study investigated the occurrence and concentrations of twenty-two indicator TOrCs at three wastewater treatment plants (WWTPs) in South India serving diverse communities across three sampling campaigns. Samples were collected after each WWTP treatment unit and removal efficiencies for TOrCs were determined. Eleven TOrCs were detected in every sample from every location at all sites, while only five TOrCs were detected consistently in effluent samples. Caffeine was present at greatest concentration in the influent of all three plants with average concentrations ranging between 56 and 65μg/L. In contrast, the x-ray contrast media pharmaceutical, iohexol, was the highest detected compound on average in the effluent at all three WWTPs (2.1-8.7μg/L). TOrCs were not completely removed in the WWTPs with removal efficiencies being compound specific and most of the attenuation being attributed to the biological treatment processes. Caffeine and triclocarban were well removed (>80%), while other compounds were poorly removed (acesulfame, sucralose, iohexol) or maybe even formed (carbamazepine) within the WWTPs. The effluent composition of the 22 TOrCs were similar within the three WWTPs but quite different to those seen in the US, indicating the importance of region-specific monitoring. Diurnal trends indicated that variability is compound specific but trended within certain classes of compounds (artificial sweeteners, and pharmaceuticals). The data collected on TOrCs from this study can be used as a baseline to identify potential remediation and regulatory strategies in this understudied region of India.
Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2008
K. Rama Krishna; Ligy Philip
This paper discusses the degradation kinetics of mixed (lindane, methyl parathion and carbofuran) pesticides by mixed pesticide enriched cultures (MEC) under various environmental conditions. The bacterial strains isolated from the mixed microbial consortium were identified as Pseudomonas aeruginosa (MTCC 9236), Bacillus sp. (MTCC 9235) and Chryseobacterium joostei (MTCC 9237). Batch studies were conducted to estimate the biokinetic parameters like the maximum specific growth rate (μmax), Yield Coefficient (YT), half saturation concentration (Ks) and inhibition concentration (Ki) for individual and mixed pesticide enriched cultures. The cultures enriched in a particular pollutant always showed high growth rate and low inhibition in that particular pollutant compared to MEC. After seven weeks of incubation, mixed pesticide enriched cultures were able to degrade 72% lindane, 95% carbofuran and 100% of methyl parathion in facultative co-metabolic conditions. In aerobic systems, degradation efficiencies of lindane methyl parathion and carbofuran were increased by the addition of 2g L− 1 of dextrose. Though many metabolic compounds of mixed pesticides were observed at different time intervals, none of the metabolites were persistent. Based on the observed metabolites, a degradation pathway was postulated for different pesticides under various environmental conditions.
Bioresource Technology | 2012
P. Balasubramanian; Ligy Philip; S. Murty Bhallamudi
Biodegradation of chloroform along with a mixture of VOCs (methanol, ethanol, acetone and toluene) commonly found in pharmaceutical emissions using a biotrickling filter (BTF) was evaluated. The performance of the BTF was evaluated for both steady and transient conditions, for different inlet loading rates (ILR), empty bed residence time (EBRT) and inlet chloroform concentrations. Among the VOCs studied before chloroform feeding, toluene removal was the least, under all the operating conditions. Complete removal of all pollutants was achieved up to a chloroform loading rate of 14.22 g/m(3)/h. Increase in loading rate of chloroform adversely affected the removal efficiency of toluene and declined the overall performance of BTF. The results suggest that biodegradation of VOCs is influenced by the inlet loading rate and complexity of pollutants in the inlet air stream. Results from studies on shock loading and starvation indicated that the system was highly resilient to transient operating conditions.
Bioremediation Journal | 2006
Mathava Kumar; Ligy Philip
ABSTRACT A bacterial consortium consists of three bacterial isolates, which rapidly mineralizes endosulfan, was enriched from an endosulfan-processing industrial surface soil. Batch experiments were conducted using bacterial consortium and its pure isolates for their potential degradation of endosulfan and its metabolites, i.e., endosulfan sulfate, endosulfan ether, and endosulfan lactone, in anaerobic condition. Endosulfan degradation was promising with bacterial consortium and pure isolates. Staphylococcus sp. preferably utilized beta endosulfan whereas other two Bacillus strains utilized more alpha endosulfan. The addition of supplementary carbon, i.e., dextrose, stimulated the endosulfan degradation efficiency in both the cases. Degradation of endosulfan ether and endosulfan lactone was promising with Bacillus circulans I and II whereas no endosulfan sulfate was degraded by any of these strains. From the present investigation, it was postulated that endosulfan was mineralized via hydrolysis pathway with the formation of carbenium ions and/or ethylcarboxylates, which later converted into simple hydrocarbons.
Applied Biochemistry and Biotechnology | 2011
K. Rama Krishna; Ligy Philip
In the present study, degradation efficiencies for individual as well as mixed pesticide in different Indian soils, by mixed pesticide-enriched cultures, were evaluated under submerged and unsaturated conditions, Lindane (L), methyl parathion (MP), carbofuran (C), and a mixture of L, MP, and C were used in the study. For all the various conditions considered, methyl parathion degradation was the maximum and lindane degradation was the minimum. The degradation kinetics of the pesticides in sandy, clayey, compost, and red soils by various microbial isolates were studied. It was observed that adsorption was maximum and degradation of pesticides was minimum in compost soil. The degradation efficiencies of pesticides in liquid phase associated with soil sediment were less than those under the normal liquid phase conditions as leaching of pesticides from soil phase was continuous. Pesticide degradation was more in submerged soils compared to that in unsaturated soils. The degradation by-products of individual and mixed pesticides in liquid, unsaturated, and submerged soils were identified. Different metabolites were produced under submerged and unsaturated conditions.
Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2007
Mathava Kumar; Ligy Philip
A novel mixed bacterial culture was enriched from an endosulfan (6, 7, 8, 9, 10, 10 – hexachloro-1, 5, 5a, 6, 9, 9a-hexahydro-6, 9-methano-2, 3, 4-benzo (e) dioxathiepin-3-oxide) processing industrial surface soil. The cultures were successful in the degradation of aqueous phase endosulfan in both aerobic and anaerobic conditions. Using the cultures, endosulfan degradation in silty gravel with sand (GM) was examined via pilot scale reactor at an endosulfan concentration of 0.78 ± 0.01 mg g− 1 of soil, and optimized moisture content of 40 ± 1%. During operation, vertical spatial variability in endosulfan degradation was observed within the reactor. At the end of 56 days, maximum endosulfan degradation efficiency of 78 ± 0.2% and 86.91 ± 0.2% was observed in the top and bottom portion of the reactor, respectively. Both aerobic and anaerobic conditions were observed within the reactor. However, endosulfan degradation was predominant in anaerobic condition and the total protein concentration in the reactor was declined progressively down the soil depth. Throughout the study, no known intermediate metabolites of endosulfan reported by previous researchers were observed.
Applied Biochemistry and Biotechnology | 2015
Akashdeep Singh Oberoi; Ligy Philip; S. Murty Bhallamudi
Present study focused on the screening of bacterial consortium for biodegradation of monocyclic aromatic hydrocarbon (MAH) and polycyclic aromatic hydrocarbons (PAHs). Target compounds in the present study were naphthalene, acenaphthene, phenanthrene (PAHs), and benzene (MAH). Microbial consortia enriched with the above target compounds were used in screening experiments. Naphthalene-enriched consortium was found to be the most efficient consortium, based on its substrate degradation rate and its ability to degrade other aromatic pollutants with significantly high efficiency. Substrate degradation rate with naphthalene-enriched culture followed the order benzene > naphthalene > acenaphthene > phenanthrene. Chryseobacterium and Rhodobacter were discerned as the predominant species in naphthalene-enriched culture. They are closely associated to the type strain Chryseobacterium arthrosphaerae and Rhodobacter maris, respectively. Single substrate biodegradation studies with naphthalene (PAH) and benzene (MAH) were carried out using naphthalene-enriched microbial consortium (NAPH). Phenol and 2-hydroxybenzaldehyde were identified as the predominant intermediates during benzene and naphthalene degradation, respectively. Biodegradation of toluene, ethyl benzene, xylene, phenol, and indole by NAPH was also investigated. Monod inhibition model was able to simulate biodegradation kinetics for benzene, whereas multiple substrate biodegradation model was able to simulate biodegradation kinetics for naphthalene.