Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lihong Cheng is active.

Publication


Featured researches published by Lihong Cheng.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet

Jamie E. Mells; Pingping Fu; Shvetank Sharma; Darin E. Olson; Lihong Cheng; Jeffrey Handy; Neeraj K. Saxena; Dan Sorescu; Frank A. Anania

The aims of this study were designed to determine whether liraglutide, a long-acting glucagon-like peptide, could reverse the adverse effects of a diet high in fat that also contained trans-fat and high-fructose corn syrup (ALIOS diet). Specifically, we examined whether treatment with liraglutide could reduce hepatic insulin resistance and steatosis as well as improve cardiac function. Male C57BL/6J mice were pair fed or fed ad libitum either standard chow or the ALIOS diet. After 8 wk the mice were further subdivided and received daily injections of either liraglutide or saline for 4 wk. Hyperinsulinemic-euglycemic clamp studies were performed after 6 wk, revealing hepatic insulin resistance. Glucose tolerance and insulin resistance tests were performed at 8 and 12 wk prior to and following liraglutide treatment. Liver pathology, cardiac measurements, blood chemistry, and RNA and protein analyses were performed. Clamp studies revealed hepatic insulin resistance after 6 wk of ALIOS diet. Liraglutide reduced visceral adiposity and liver weight (P < 0.001). As expected, liraglutide improved glucose and insulin tolerance. Liraglutide improved hypertension (P < 0.05) and reduced cardiac hypertrophy. Surprisingly, liver from liraglutide-treated mice had significantly higher levels of fatty acid binding protein, acyl-CoA oxidase II, very long-chain acyl-CoA dehydrogenase, and microsomal triglyceride transfer protein. We conclude that liraglutide reduces the harmful effects of an ALIOS diet by improving insulin sensitivity and by reducing lipid accumulation in liver through multiple mechanisms including, transport, and increase β-oxidation.


Journal of Biological Chemistry | 2008

FOXO3A Regulates Peroxiredoxin III Expression in Human Cardiac Fibroblasts

Calin B. Chiribau; Lihong Cheng; Ioan Cucoranu; Yong-Shen Yu; Roza E. Clempus; Dan Sorescu

Human cardiac fibroblasts are protected from oxidative stress triggered by inflammation after myocardial injury (Li, P. F., Dietz, R., and von Harsdorf, R. (1999) FEBS Lett. 448, 206–210) by expressing potent antioxidant defenses such as superoxide dismutases, catalases, glutathione-peroxidases, and peroxiredoxins. Recently the transcription factor FOXO3A has been shown to increase resistance to oxidative stress by up-regulation of mitochondrial superoxide dismutase and peroxisomal catalase (Kops, G. J., Dansen, T. B., Polderman, P. E., Saarloos, I., Wirtz, K. W., Coffer, P. J., Huang, T. T., Bos, J. L., Medema, R. H., and Burgering, B. M. (2002) Nature 419, 316–321; Nemoto, S., and Finkel, T. (2002) Science 295, 2450–2452). We hypothesized that FOXO3A also regulates the expression of Prx III, the mitochondrial peroxiredoxin, in human cardiac fibroblasts. We found that depletion of FOXO3A leads to a dramatic reduction of Prx III mRNA and protein in serum-deprived human cardiac fibroblasts. These data suggest that endogenous FOXO3A is necessary for base-line expression of Prx III. Next, we identified two putative FOXO3A DNA binding sites in Prx III promoter at –267 and –244 nucleotides relative to the start codon. We demonstrated that both sequences are required for binding of endogenous FOXO3A to the Prx III promoter by performing electromobility shift assays and chromatin immunoprecipitation assays. Inhibition of endogenous FOXO3A by insulin growth factor 1 prevented binding of FOXO3A to Prx III promoter. In contrast, overexpression of FOXO3A increased Prx III promoter activity. Furthermore, depletion of Prx III was associated with enhanced apoptosis and oxidative stress after serum deprivation. We conclude that FOXO3A mediates Prx III expression, and this may play a critical role in the resistance to oxidative stress in cardiac fibroblasts.


Journal of Cerebral Blood Flow and Metabolism | 2015

Tissue-type plasminogen activator triggers the synaptic vesicle cycle in cerebral cortical neurons

Fang Wu; Enrique Torre; David Cuellar-Giraldo; Lihong Cheng; Edyta K. Bichler; Paul S. García; Manuel Yepes

The active zone (AZ) is a thickening of the presynaptic membrane where exocytosis takes place. Chemical synapses contain neurotransmitter-loaded synaptic vesicles (SVs) that at rest are tethered away from the synaptic release site, but after the presynaptic inflow of Ca+2 elicited by an action potential translocate to the AZ to release their neurotransmitter load. We report that tissue-type plasminogen activator (tPA) is stored outside the AZ of cerebral cortical neurons, either intermixed with small clear-core vesicles or in direct contact with the presynaptic membrane. We found that cerebral ischemia-induced release of neuronal tPA, or treatment with recombinant tPA, recruits the cytoskeletal protein βII-spectrin to the AZ and promotes the binding of SVs to βII-spectrin, enlarging the population of SVs in proximity to the synaptic release site. This effect does not require the generation of plasmin and is followed by the recruitment of voltage gated calcium channels (VGCC) to the presynaptic terminal that leads to Ca+2-dependent synapsin I phosphorylation, freeing SVs to translocate to the AZ to deliver their neurotransmitter load. Our studies indicate that tPA activates the SV cycle and induces the structural and functional changes in the synapse that are required for successful neurotransmission.


Journal of Cell Biology | 2018

p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1

Yingli He; Hua She; Ting Zhang; Haidong Xu; Lihong Cheng; Manuel Yepes; Yingren Zhao; Zixu Mao

Inflammation and autophagy are two critical cellular processes. The relationship between these two processes is complex and includes the suppression of inflammation by autophagy. However, the signaling mechanisms that relieve this autophagy-mediated inhibition of inflammation to permit a beneficial inflammatory response remain unknown. We find that LPS triggers p38&agr; mitogen-activated protein kinase (MAPK)–dependent phosphorylation of ULK1 in microglial cells. This phosphorylation inhibited ULK1 kinase activity, preventing it from binding to the downstream effector ATG13, and reduced autophagy in microglia. Consistently, p38&agr; MAPK activity is required for LPS-induced morphological changes and the production of IL-1&bgr; by primary microglia in vitro and in the brain, which correlates with the p38&agr; MAPK-dependent inhibition of autophagy. Furthermore, inhibition of ULK1 alone was sufficient to promote an inflammatory response in the absence of any overt inflammatory stimulation. Thus, our study reveals a molecular mechanism that enables the initial TLR4-triggered signaling pathway to inhibit autophagy and optimize inflammatory responses, providing new understanding into the mechanistic basis of the neuroinflammatory process.


The Journal of Neuroscience | 2017

A Cross Talk between Neuronal Urokinase-type Plasminogen Activator (uPA) and Astrocytic uPA Receptor (uPAR) Promotes Astrocytic Activation and Synaptic Recovery in the Ischemic Brain

Ariel Diaz; Paola Merino; Luis Guillermo Manrique; Juan Pablo Ospina; Lihong Cheng; Fang Wu; Valerie Jeanneret; Manuel Yepes

Urokinase-type plasminogen activator (uPA) is a serine proteinase that, upon binding to its receptor (uPAR), catalyzes the conversion of plasminogen into plasmin on the cell surface. Our previous studies indicate that uPA and uPAR expression increase in the ischemic brain during the recovery phase from an acute ischemic injury and that uPA binding to uPAR promotes neurological recovery after an acute ischemic stroke. Here, we used male mice genetically deficient on either uPA (uPA−/−) or uPAR (uPAR−/−) or with a four-amino acid substitution into the growth factor domain of uPA that abrogates its binding to uPAR (PlatGFDhu/GFDhu) to investigate the mechanism whereby uPA promotes neurorepair in the ischemic brain. We found that neurons release uPA and astrocytes recruit uPAR to their plasma membrane during the recovery phase from a hypoxic injury and that binding of neuronal uPA to astrocytic uPAR induces astrocytic activation by a mechanism that does not require plasmin generation, but instead is mediated by extracellular signal-regulated kinase 1/2 (ERK1/2)-regulated phosphorylation of the signal transducer and activator of transcription 3 (STAT3). We report that uPA/uPAR binding is necessary and sufficient to induce astrocytic activation in the ischemic brain and that astrocytes activated by neuronal uPA promote synaptic recovery in neurons that have suffered an acute hypoxic injury via a mechanism mediated by astrocytic thrombospondin-1 (TSP1) and synaptic low-density lipoprotein receptor-related protein-1 (LRP1). In summary, we show that uPA/uPAR-induced astrocytic activation mediates a cross talk between astrocytes and injured neurons that promotes synaptic recovery in the ischemic brain. SIGNIFICANCE STATEMENT To date, there is no therapeutic strategy to promote synaptic recovery in the injured brain. Here, we show that neurons release urokinase-type plasminogen activator (uPA) and astrocytes recruit the uPA receptor (uPAR) to their plasma membrane during the recovery phase from a hypoxic injury. We found that binding of neuronal uPA to astrocytic uPAR promotes astrocytic activation and that astrocytes activated by uPA–uPAR binding promote synaptic recovery in neurons that have suffered a hypoxic injury by a mechanism that does not require plasmin generation, but instead is mediated by ERK1/2-regulated STAT3 phosphorylation, astrocytic thrombospondin-1 (TSP1) and synaptic low-density lipoprotein receptor-related protein-1 (LRP1). Our work unveils a new biological function for uPA–uPAR as mediator of a neuron–astrocyte cross talk that promotes synaptic recovery in the ischemic brain.


Journal of Biological Chemistry | 2017

Urokinase-type Plasminogen Activator (uPA) Binding to the uPA Receptor (uPAR) Promotes Axonal Regeneration in the Central Nervous System

Paola Merino; Ariel Diaz; Valerie Jeanneret; Fang Wu; Enrique Torre; Lihong Cheng; Manuel Yepes

Axonal injury is a common cause of neurological dysfunction. Unfortunately, in contrast to axons from the peripheral nervous system, the limited capacity of regeneration of central nervous system (CNS) axons is a major obstacle for functional recovery in patients suffering neurological diseases that involve the subcortical white matter. Urokinase-type plasminogen activator (uPA) is a serine proteinase that upon binding to the urokinase-type plasminogen activator receptor (uPAR) catalyzes the conversion of plasminogen into plasmin on the cell surface. uPAR expression increases after an injury, and signaling through uPAR promotes tissue remodeling. However, it is yet unknown whether uPA binding to uPAR has an effect on axonal recovery in the CNS. Here, we used in vitro and in vivo models of CNS axonal injury to test the hypothesis that uPA binding to uPAR promotes axonal regeneration in the CNS. We found that newly formed growth cones from axons re-emerging from an axonal injury express uPAR and that binding of uPA to this uPAR promotes axonal recovery by a mechanism that does not require the generation of plasmin. Our data indicate that the binding of recombinant uPA or endogenous uPA to uPAR induces membrane recruitment and activation of β1 integrin via the low density lipoprotein receptor-related protein-1 (LRP1), which leads to activation of the Rho family small GTPase Rac1 and Rac1-induced axonal regeneration. Our results show that the uPA/uPAR/LRP1 system is a potential target for the development of therapeutic strategies to promote axonal recovery following a CNS injury.


Neuroscience | 2016

Tissue-type plasminogen activator induces synaptic vesicle endocytosis in cerebral cortical neurons.

Manuel Yepes; Fang Wu; Enrique Torre; David Cuellar-Giraldo; Dingwu Jia; Lihong Cheng

The release of the serine proteinase tissue-type plasminogen activator (tPA) from the presynaptic terminal of cerebral cortical neurons plays a central role in the development of synaptic plasticity, adaptation to metabolic stress and neuronal survival. Our earlier studies indicate that by inducing the recruitment of the cytoskeletal protein βII-spectrin and voltage-gated calcium channels to the active zone, tPA promotes Ca(2+)-dependent translocation of synaptic vesicles (SVs) to the synaptic release site where they release their load of neurotransmitters into the synaptic cleft. Here we used a combination of in vivo and in vitro experiments to investigate whether this effect leads to depletion of SVs in the presynaptic terminal. Our data indicate that tPA promotes SV endocytosis via a mechanism that does not require the conversion of plasminogen into plasmin. Instead, we show that tPA induces calcineurin-mediated dynamin I dephosphorylation, which is followed by dynamin I-induced recruitment of the actin-binding protein profilin II to the presynaptic membrane, and profilin II-induced F-actin formation. We report that this tPA-induced sequence of events leads to the association of newly formed SVs with F-actin clusters in the endocytic zone. In summary, the data presented here indicate that following the exocytotic release of neurotransmitters tPA activates the mechanism whereby SVs are retrieved from the presynaptic membrane and endocytosed to replenish the pool of vesicles available for a new cycle of exocytosis. Together, these results indicate that in murine cerebral cortical neurons tPA plays a central role coupling SVs exocytosis and endocytosis.


Frontiers in Molecular Neuroscience | 2016

Tissue-type Plasminogen Activator (tPA) Modulates the Postsynaptic Response of Cerebral Cortical Neurons to the Presynaptic Release of Glutamate

Valerie Jeanneret; Fang Wu; Paola Merino; Enrique Torre; Ariel Diaz; Lihong Cheng; Manuel Yepes

Tissue-type plasminogen activator (tPA) is a serine proteinase released by the presynaptic terminal of cerebral cortical neurons following membrane depolarization (Echeverry et al., 2010). Recent studies indicate that the release of tPA triggers the synaptic vesicle cycle and promotes the exocytosis (Wu et al., 2015) and endocytic retrieval (Yepes et al., 2016) of glutamate-containing synaptic vesicles. Here we used electron microscopy, proteomics, quantitative phosphoproteomics, biochemical analyses with extracts of the postsynaptic density (PSD), and an animal model of cerebral ischemia with mice overexpressing neuronal tPA to study whether the presynaptic release of tPA also has an effect on the postsynaptic terminal. We found that tPA has a bidirectional effect on the composition of the PSD of cerebral cortical neurons that is independent of the generation of plasmin and the presynaptic release of glutamate, but depends on the baseline level of neuronal activity and the extracellular concentrations of calcium (Ca2+). Accordingly, in neurons that are either inactive or incubated with low Ca2+ concentrations tPA induces phosphorylation and accumulation in the PSD of the Ca2+/calmodulin-dependent protein kinase IIα (pCaMKIIα), followed by pCaMKIIα-mediated phosphorylation and synaptic recruitment of GluR1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. In contrast, in neurons with previously increased baseline levels of pCaMKIIα in the PSD due to neuronal depolarization in vivo or incubation with high concentrations of either Ca2+ or glutamate in vitro, tPA induces pCaMKIIα and pGluR1 dephosphorylation and their subsequent removal from the PSD. We found that these effects of tPA are mediated by synaptic N-methyl-D-aspartate (NMDA) receptors and cyclin-dependent kinase 5 (Cdk5)-induced phosphorylation of the protein phosphatase 1 (PP1) at T320. Our data indicate that by regulating the pCaMKIIα/PP1 balance in the PSD tPA acts as a homeostatic regulator of the postsynaptic response of cerebral cortical neurons to the presynaptic release of glutamate.


Journal of Biological Chemistry | 2018

Urokinase-type plasminogen activator (uPA) promotes ezrin-mediated reorganization of the synaptic cytoskeleton in the ischemic brain

Paola Merino; Ariel Diaz; Luis Guillermo Manrique; Lihong Cheng; Manuel Yepes

Synaptic repair in the ischemic brain is a complex process that requires reorganization of the actin cytoskeleton. Ezrin, radixin, and moesin (ERM) are a group of evolutionarily conserved proteins that link the plasma membrane to the actin cytoskeleton and act as scaffolds for signaling transduction. Urokinase-type plasminogen activator (uPA) is a serine proteinase that upon binding to the urokinase-type plasminogen activator receptor (uPAR) catalyzes the conversion of plasminogen into plasmin on the cell surface and activates intracellular signaling pathways. Early studies indicate that uPA and uPAR expression increase during the recovery phase from an ischemic stroke and that uPA binding to uPAR promotes neurorepair in the ischemic brain. The in vitro and in vivo studies presented here show that either the release of neuronal uPA or treatment with recombinant uPA induces the local synthesis of ezrin in the synapse and the recruitment of β3-integrin to the postsynaptic density (PSD) of cerebral cortical neurons by a plasminogen-independent mechanism. We found that β3-integrin has a double effect on ezrin, inducing its recruitment to the PSD via the intercellular adhesion molecule-5 (ICAM-5) and its subsequent activation by phosphorylation at Thr-567. Finally, our data indicate that by triggering the reorganization of the actin cytoskeleton in the postsynaptic terminal, active ezrin induces the recovery of dendritic spines and synapses that have been damaged by an acute ischemic stroke. In summary, our data show that uPA–uPAR binding promotes synaptic repair in the ischemic brain via ezrin-mediated reorganization of the actin cytoskeleton in the postsynaptic terminal.


Journal of Neuroinflammation | 2018

Polymerase delta-interacting protein 2 deficiency protects against blood-brain barrier permeability in the ischemic brain

Marina S. Hernandes; Bernard Lassègue; Lula Hilenski; Jonathan Adams; Ning Gao; Chia-Yi Kuan; Yu-Yo Sun; Lihong Cheng; Daniel S. Kikuchi; Manuel Yepes; Kathy K. Griendling

Collaboration


Dive into the Lihong Cheng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge