Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where hong Li is active.

Publication


Featured researches published by hong Li.


IEEE Transactions on Medical Imaging | 2000

A novel approach to extract colon lumen from CT images for virtual colonoscopy

Dongquing Chen; Mark R. Wax; Lihong Li; Zhengrong Liang; B. Li; Arie E. Kaufman

An automatic method has been developed for segmentation of abdominal computed tomography (CT) images for virtual colonoscopy obtained after a bowel preparation of a low-residue diet with ingested contrast solutions to enhance the image intensities of residual colonic materials. Removal of the enhanced materials was performed electronically by a computer algorithm. The method is a multistage approach that employs a modified self-adaptive on-line, vector quantization technique for a low-level image classification and utilizes a region-growing strategy for a high-level feature extraction. The low-level classification labels each voxel based on statistical analysis of its three-dimensional intensity vectors consisting of nearby voxels. The high-level processing extracts the labeled stool, fluid and air voxels within the colon, and eliminates bone and lung voxels which have similar image intensities as the enhanced materials and air, but are physically separated from the colon. This method was evaluated by volunteer studies based on both objective and subjective criteria. The validation demonstrated that the method has a high reproducibility and repeatability and a small error due to partial volume effect. As a result of this electronic colon cleansing, routine physical bowel cleansing prior to virtual colonoscopy may not be necessary.


Medical Physics | 2005

Reduction of False Positives by Internal Features for Polyp Detection in CT-Based Virtual Colonoscopy

Zigang Wang; Zhengrong Liang; Lihong Li; Xiang Li; Bin Li; Joseph C Anderson; Donald P. Harrington

In this paper, we present a computer-aided detection (CAD) method to extract and use internal features to reduce false positive (FP) rate generated by surface-based measures on the inner colon wall in computed tomographic (CT) colonography. Firstly, a new shape description global curvature, which can provide an overall shape description of the colon wall, is introduced to improve the detection of suspicious patches on the colon wall whose geometrical features are similar to that of the colonic polyps. By a ray-driven edge finder, the volume of each detected patch is extracted as a fitted ellipsoid model. Within the ellipsoid model, CT image density distribution is analyzed. Three types of (geometrical, morphological, and textural) internal features are extracted and applied to eliminate the FPs from the detected patches. The presented CAD method was tested by a total of 153 patient datasets in which 45 patients were found with 61 polyps of sizes 4-30 mm by optical colonoscopy. For a 100% detection sensitivity (on polyps), the presented CAD method had an average FPs of 2.68 per patient dataset and eliminated 93.1% of FPs generated by the surface-based measures. The presented CAD method was also evaluated by different polyp sizes. For polyp sizes of 10-30 mm, the method achieved mean number of FPs per dataset of 2.0 with 100% sensitivity. For polyp sizes of 4-10 mm, the method achieved 3.44 FP per dataset with 100% sensitivity.


IEEE Transactions on Biomedical Engineering | 2006

An Improved Electronic Colon Cleansing Method for Detection of Colonic Polyps by Virtual Colonoscopy

Zigang Wang; Zhengrong Liang; Xiang Li; Lihong Li; Bin Li; Daria Eremina; Hongbing Lu

Electronic colon cleansing (ECC) aims to segment the colon lumen from a patient abdominal image acquired using an oral contrast agent for colonic material tagging, so that a virtual colon model can be constructed. Virtual colonoscopy (VC) provides fly-through navigation within the colon model, looking for polyps on the inner surface in a manner analogous to that of fiber optic colonoscopy. We have built an ECC pipeline for a commercial VC navigation system. In this paper, we present an improved ECC method. It is based on a partial-volume (PV) image-segmentation framework, which is derived using the well-established statistical expectation-maximization algorithm. The presented ECC method was evaluated by both visual inspection and computer-aided detection of polyps (CADpolyp) within the cleansed colon lumens obtained using 20 patient datasets. Compared to our previous ECC pipeline, which does not sufficiently consider the PV effect, the method presented in this paper demonstrates improved polyp detection by both visual judgment and CADpolyp measure


Medical Physics | 2005

Partial Volume Segmentation of Brain Magnetic Resonance Images Based on Maximum a Posteriori Probability

Xiang Li; Lihong Li; Hongbing Lu; Zhengrong Liang

Noise, partial volume (PV) effect, and image-intensity inhomogeneity render a challenging task for segmentation of brain magnetic resonance (MR) images. Most of the current MR image segmentation methods focus on only one or two of the above-mentioned effects. The objective of this paper is to propose a unified framework, based on the maximum a posteriori probability principle, by taking all these effects into account simultaneously in order to improve image segmentation performance. Instead of labeling each image voxel with a unique tissue type, the percentage of each voxel belonging to different tissues, which we call a mixture, is considered to address the PV effect. A Markov random field model is used to describe the noise effect by considering the nearby spatial information of the tissue mixture. The inhomogeneity effect is modeled as a bias field characterized by a zero mean Gaussian prior probability. The well-known fuzzy C-mean model is extended to define the likelihood function of the observed image. This framework reduces theoretically, under some assumptions, to the adaptive fuzzy C-mean (AFCM) algorithm proposed by Pham and Prince. Digital phantom and real clinical MR images were used to test the proposed framework. Improved performance over the AFCM algorithm was observed in a clinical environment where the inhomogeneity, noise level, and PV effect are commonly encountered.


Medical Imaging 2002: Physiology and Function from Multidimensional Images | 2002

Image segmentation approach to extract colon lumen through colonic material tagging and hidden Markov random field model for virtual colonoscopy

Lihong Li; Dongqing Chen; Sarang Lakare; Kevin Kreeger; Ingmar Bitter; Arie E. Kaufman; Mark R. Wax; Petar M. Djuric; Zhengrong Liang

Virtual colonoscopy provides a safe, minimal-invasive approach to detect colonic polyps using medical imaging and computer graphics technologies. Residual stool and fluid are problematic for optimal viewing of the colonic mucosa. Electronic cleansing techniques combining bowel preparation, oral contrast agents, and image segmentation were developed to extract the colon lumen from computed tomography (CT) images of the colon. In this paper, we present a new electronic colon cleansing technology, which employs a hidden Markov random filed (MRF) model to integrate the neighborhood information for overcoming the non-uniformity problems within the tagged stool/fluid region. Prior to obtaining CT images, the patient undergoes a bowel preparation. A statistical method for maximum a posterior probability (MAP) was developed to identify the enhanced regions of residual stool/fluid. The method utilizes a hidden MRF Gibbs model to integrate the spatial information into the Expectation Maximization (EM) model-fitting MAP algorithm. The algorithm estimates the model parameters and segments the voxels iteratively in an interleaved manner, converging to a solution where the model parameters and voxel labels are stabilized within a specified criterion. Experimental results are promising.


IEEE Journal of Biomedical and Health Informatics | 2015

Fast and Adaptive Detection of Pulmonary Nodules in Thoracic CT Images Using a Hierarchical Vector Quantization Scheme

Hao Han; Lihong Li; Fangfang Han; Bowen Song; William Moore; Zhengrong Liang

Computer-aided detection (CADe) of pulmonary nodules is critical to assisting radiologists in early identification of lung cancer from computed tomography (CT) scans. This paper proposes a novel CADe system based on a hierarchical vector quantization (VQ) scheme. Compared with the commonly-used simple thresholding approach, the high-level VQ yields a more accurate segmentation of the lungs from the chest volume. In identifying initial nodule candidates (INCs) within the lungs, the low-level VQ proves to be effective for INCs detection and segmentation, as well as computationally efficient compared to existing approaches. False-positive (FP) reduction is conducted via rule-based filtering operations in combination with a feature-based support vector machine classifier. The proposed system was validated on 205 patient cases from the publically available online Lung Image Database Consortium database, with each case having at least one juxta-pleural nodule annotation. Experimental results demonstrated that our CADe system obtained an overall sensitivity of 82.7% at a specificity of 4 FPs/scan. Especially for the performance on juxta-pleural nodules, we observed 89.2% sensitivity at 4.14 FPs/scan. With respect to comparable CADe systems, the proposed system shows outperformance and demonstrates its potential for fast and adaptive detection of pulmonary nodules via CT imaging.


Medical Imaging 2003: Physics of Medical Imaging | 2003

Adaptive noise reduction toward low-dose computed tomography

Hongbing Lu; Xiang Li; Lihong Li; Dongqing Chen; Yuxiang Xing; Jiang Hsieh; Zhengrong Liang

An efficient noise treatment scheme has been developed to achieve low-dose CT diagnosis based on currently available CT hardware and image reconstruction technologies. The scheme proposed includes two main parts: filtering in sinogram domain and smoothing in image domain. The acquired projection sinograms were first treated by our previously proposed Karhunen-Loeve (K-L) domain penalized weighted least-square (PWLS) filtering, which fully utilizes the prior statistical noise property and three-dimensional (3D) spatial information for an accurate restoration of the low-dose projections. To treat the streak artifacts due to photon starvation, we also incorporated an adaptive filtering into our PWLS framework, which selectively smoothes those channels contributing most to the streak artifacts. After the sinogram filtering, the image was reconstructed by the conventional filtered backprojection (FBP) method. The image is assumed as piecewise regions each has a unique texture. Therefore, an edge-preserving smoothing (EPS) with locally-adaptive parameters to the noise variation was applied for further noise reduction in image domain. Experimental phantom projections acquired by a GE spiral computed tomography (CT) scanner under 10 mAs tube current were used to evaluate the proposed smoothing scheme. The reconstructed imaged demonstrated that the smoothing scheme with appropriate control parameters provides a significant improvement on noise suppression without sacrificing the spatial resolution.


Medical Imaging 2001: Image Processing | 2001

Combined transformation of ordering SPECT sinograms for signal extraction from measurements with Poisson noise

Hongbing Lu; Dongqing Chen; Lihong Li; Guoping Han; Zhengrong Liang

A theoretically based transformation, which reorders SPECT sinograms degraded by the Poisson noise according to their signal-to-noise ratio (SNR), has been proposed. The transformation is equivalent to the maximum noise fraction (MNF) approach developed for Gaussian noise treatment. It is a two-stage transformation. The first stage is the Anscombe transformation, which converts Poisson distributed variable into Gaussian distributed one with constant variance. The second one is the Karhunen-Loeve (K-L) transformation along the direction of the slices, which simplifies the complex task of three-dimensional (3D) filtering into 2D spatial process slice-by-slice. In the K-L domain, the noise property of constant variance remains for all components, while the SNR of each component decreases proportional to its eigenvalue, providing a measure for the significance of each components. The availability of the noise covariance matrix in this method eliminates the difficulty of separating noise from signal. Thus we can construct an accurate 2D Wiener filter for each sinogram component in the K-L domain, and design a weighting window to make the filter adaptive to the SNR of each component, leading to an improved restoration of SPECT sinograms. Experimental results demonstrate that the proposed method provides a better noise reduction without sacrifice of resolution.


IEEE Transactions on Nuclear Science | 2008

Virtual Colonoscopy Screening With Ultra Low-Dose CT and Less-Stressful Bowel Preparation: A Computer Simulation Study

Jing Wang; Su Wang; Lihong Li; Yi Fan; Hongbing Lu; Zhengrong Liang

Computed tomography colonography (CTC) or CT-based virtual colonoscopy (VC) is an emerging tool for detection of colonic polyps. Compared to the conventional fiber-optic colonoscopy, VC has demonstrated the potential to become a mass screening modality in terms of safety, cost, and patient compliance. However, current CTC delivers excessive X-ray radiation to the patient during data acquisition. The radiation is a major concern for screening application of CTC. In this work, we performed a simulation study to demonstrate a possible ultra low-dose CT technique for VC. The ultra low-dose abdominal CT images were simulated by adding noise to the sinograms of the patient CTC images acquired with normal dose scans at 100 mAs levels. The simulated noisy sinogram or projection data were first processed by a Karhunen-Loève domain penalized weighted least-squares (KL-PWLS) restoration method and then reconstructed by a filtered backprojection algorithm for the ultra low-dose CT images. The patient-specific virtual colon lumen was constructed and navigated by a VC system after electronic colon cleansing of the orally-tagged residue stool and fluid. By the KL-PWLS noise reduction, the colon lumen can successfully be constructed and the colonic polyp can be detected in an ultra low-dose level below 50 mAs. Polyp detection can be found more easily by the KL-PWLS noise reduction compared to the results using the conventional noise filters, such as Hanning filter. These promising results indicate the feasibility of an ultra low-dose CTC pipeline for colon screening with less-stressful bowel preparation by fecal tagging with oral contrast.


Medical Imaging 2002: Physiology and Function from Multidimensional Images | 2002

Electronic colon cleansing using segmentation rays for virtual colonoscopy

Sarang Lakare; Dongqing Chen; Lihong Li; Arie E. Kaufman; Zhengrong Liang

We present an electronic colon cleansing algorithm using a new segmentation technique based on segmentation rays. These rays are specially designed to analyze the intensity profile as they traverse through the dataset. When this intensity profile matches any of the pre-defined profiles, the rays perform certain task of reconstruction. We use these rays to detect the intersection between air and residual fluid, and between residual fluid and soft-tissue. One of the most important advantages of segmentation rays over other segmentation techniques is the detection of partial volume regions. Segmentation rays can accurately detect partial volume regions and remove them if needed. Once partial volume is eliminated, removal of other unwanted regions (e.g., tagged fluid) is relatively easy. This approach to electronic cleansing is extremely fast as it requires minimal computation.

Collaboration


Dive into the hong Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongbing Lu

Fourth Military Medical University

View shared research outputs
Top Co-Authors

Avatar

Hao Han

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiang Li

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar

Zigang Wang

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Su Wang

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Fangfang Han

Northeastern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bowen Song

Stony Brook University

View shared research outputs
Researchain Logo
Decentralizing Knowledge