Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lihua Yuan is active.

Publication


Featured researches published by Lihua Yuan.


International Journal of Molecular Sciences | 2013

The Role of the Conjugate Bridge in Electronic Structures and Related Properties of Tetrahydroquinoline for Dye Sensitized Solar Cells

Cai-Rong Zhang; Li Liu; Jian-Wu Zhe; Neng-Zhi Jin; Yao Ma; Lihua Yuan; Mei-Lin Zhang; You-Zhi Wu; Zi-Jiang Liu; Hong-Shan Chen

To understand the role of the conjugate bridge in modifying the properties of organic dye sensitizers in solar cells, the computations of the geometries and electronic structures for 10 kinds of tetrahydroquinoline dyes were performed using density functional theory (DFT), and the electronic absorption and fluorescence properties were investigated via time dependent DFT. The population analysis, molecular orbital energies, radiative lifetimes, exciton binding energies (EBE), and light harvesting efficiencies (LHE), as well as the free energy changes of electron injection (ΔGinject ) and dye regeneration ( ΔGdyeregen ) were also addressed. The correlation of charge populations and experimental open-circuit voltage (Voc) indicates that more charges populated in acceptor groups correspond to larger Voc. The elongating of conjugate bridge by thiophene units generates the larger oscillator strength, higher LHE, larger absolute value of ΔGinject, and longer relative radiative lifetime, but it induces the decreasing of EBE and ΔGdyeregen. So the extending of conjugate bridge with thiopene units in organic dye is an effective way to increase the harvest of solar light, and it is also favorable for electron injection due to their larger ΔGinject. While the inversely correlated relationship between EBE and LHE implies that the dyes with lower EBE produce more efficient light harvesting.


Journal of Molecular Graphics & Modelling | 2012

Electronic structures and optical properties of organic dye sensitizer NKX derivatives for solar cells: A theoretical approach

Cai-Rong Zhang; Li Liu; Zi-Jiang Liu; Yu-Lin Shen; Yi-Tong Sun; You-Zhi Wu; Yu-Hong Chen; Lihua Yuan; Wei Wang; Hong-Shan Chen

The photon to current conversion efficiency of dye-sensitized solar cells (DSCs) can be significantly affected by dye sensitizers. The design of novel dye sensitizers with good performance in DSCs depend on the dyes information about electronic structures and optical properties. Here, the geometries, electronic structures, as well as the dipole moments and polarizabilities of organic dye sensitizers C343 and 20 kinds of NKX derivatives were calculated using density functional theory (DFT), and the computations of the time dependent DFT with different functionals were performed to explore the electronic absorption properties. Based upon the calculated results and the reported experimental work, we analyzed the role of different conjugate bridges, chromophores, and electron acceptor groups in tuning the geometries, electronic structures, optical properties of dye sensitizers, and the effects on the parameters of DSCs were also investigated.


Journal of Molecular Modeling | 2013

Comparative study on electronic structures and optical properties of indoline and triphenylamine dye sensitizers for solar cells

Cai-Rong Zhang; Li Liu; Jian-Wu Zhe; Neng-Zhi Jin; Lihua Yuan; Yu-Hong Chen; Zhiqiang Wei; You-Zhi Wu; Zi-Jiang Liu; Hong-Shan Chen

The computations of the geometries, electronic structures, dipole moments and polarizabilities for indoline and triphenylamine (TPA) based dye sensitizers, including D102, D131, D149, D205, TPAR1, TPAR2, TPAR4, and TPAR5, were performed using density functional theory, and the electronic absorption properties were investigated via time-dependent density functional theory with polarizable continuum model for solvent effects. The population analysis indicates that the donating electron capability of TPA is better than that of indoline group. The reduction driving forces for the oxidized D131 and TPAR1 are slightly larger than that of other dyes because of their lower highest occupied molecular orbital level. The absorption properties and molecular orbital analysis suggest that the TPA and 4-(2,2diphenylethenyl)phenyl substituent indoline groups are effective chromophores in intramolecular charge transfer (IMCT), and they play an important role in sensitization of dye-sensitized solar cells (DSCs). The better performance of D205 in DSCs results from more IMCT excited states with larger oscillator strength and higher light harvesting efficiency. While for TPA dyes, the longer conjugate bridges generate the larger oscillator strength and light harvesting efficiency, and the TPAR1 and TPAR4 have larger free energy change for electron injection and dye regeneration.


International Journal of Molecular Sciences | 2015

The Role of Porphyrin-Free-Base in the Electronic Structures and Related Properties of N-Fused Carbazole-Zinc Porphyrin Dye Sensitizers

Xing-Yu Li; Cai-Rong Zhang; You-Zhi Wu; Hai-Min Zhang; Wei Wang; Lihua Yuan; H. Yang; Zi-Jiang Liu; Hong-Shan Chen

Dye sensitizers can significantly affect power conversion efficiency of dye-sensitized solar cells (DSSCs). Porphyrin-based dyes are promising sensitizers due to their performances in DSSCs. Here, based upon a N-fused carbazole-zinc porphyrin-free-base porphyrin triad containing an ethynyl-linkage (coded as DTBC), the novel porphyrin dyes named DTBC-MP and DTBC-TP were designed by varying the porphyrin-free-base units in the π conjugation of DTBC in order to study the effect of porphyrin-free-base in the modification of electronic structures and related properties. The calculated results indicate that, the extension of the conjugate bridge with the porphyrin-free-base unit results in elevation of the highest occupied molecular orbital (HOMO) energies, decrease of the lowest unoccupied molecular orbital (LUMO) energies, reduction of the HOMO-LUMO gap, red-shift of the absorption bands, and enhancement of the absorbance. The free energy changes demonstrate that introducing more porphyrin-free-base units in the conjugate bridge induces a faster rate of electron injection. The transition properties and molecular orbital characters suggest that the different transition properties might lead to a different electron injection mechanism. In terms of electronic structure, absorption spectra, light harvesting capability, and free energy changes, the designed DTBC-TP is a promising candidate dye sensitizer for DSSCs.


Journal of Nanomaterials | 2013

Electronic structures and optical properties of phenyl C 71 butyric acid methyl esters

Cai-Rong Zhang; Li-Heng Han; Jian-Wu Zhe; Neng-Zhi Jin; Yu-Lin Shen; Lihua Yuan; You-Zhi Wu; Zi-Jiang Liu

Phenyl C71 butyric acid methyl ester (PC71BM) has been adopted as electron acceptor materials in bulk heterojunction solar cells with relatively higher power conversion efficiency. The understanding of the mechanism and performance for the devices based upon PC71BM requires the information of conformations, electronic structures, optical properties, and so forth. Here, the geometries, IR and Raman, electronic structures, polarizabilities, and hyperpolarizabilities of PC71BM isomers are studied by using density functional theory (DFT); the absorption and excitation properties are investigated via time-dependent DFT with B3LYP, PBE0, and CAM-B3LYP functionals. The calculated results show that [6,6]PC71BM is more stable than [5,6]PC71BM due to the lower total energy. The vibrational modes of the isomers at IR and Raman peaks are quite similar. As to absorption properties, CAM-B3LYP functional is the suitable functional for describing the excitations of PC71BM because the calculated results with CAM-B3LYP functional agree well with that of the experiment. The analysis of transition configurations and molecular orbitals demonstrated that the transitions at the absorption maxima in UV/Vis region are localized π-π* transitions in fullerenes cages. Furthermore, the larger isotropic polarizability of PC71BM indicates that the response of PC71BM to applied external electric field is stronger than that of PC61BM, and therefore resulting into better nonlinear optical properties.


Materials | 2017

A First Principles Study of H2 Adsorption on LaNiO3(001) Surfaces

Changchang Pan; Yu-Hong Chen; Na Wu; Mei-Ling Zhang; Lihua Yuan; Cai-Rong Zhang

The adsorption of H2 on LaNiO3 was investigated using density functional theory (DFT) calculations. The adsorption sites, adsorption energy, and electronic structure of LaNiO3(001)/H2 systems were calculated and indicated through the calculated surface energy that the (001) surface was the most stable surface. By looking at optimized structure, adsorption energy and dissociation energy, we found that there were three types of adsorption on the surface. First, H2 molecules completely dissociate and then tend to bind with the O atoms, forming two –OH bonds. Second, H2 molecules partially dissociate with the H atoms bonding to the same O atom to form one H2O molecule. These two types are chemical adsorption modes; however, the physical adsorption of H2 molecules can also occur. When analyzing the electron structure of the H2O molecule formed by the partial dissociation of the H2 molecule and the surface O atom, we found that the interaction between H2O and the (001) surface was weaker, thus, H2O was easier to separate from the surface to create an O vacancy. On the (001) surface, a supercell was constructed to accurately study the most stable adsorption site. The results from analyses of the charge population; electron localization function; and density of the states indicated that the dissociated H and O atoms form a typical covalent bond and that the interaction between the H2 molecule and surface is mainly due to the overlap-hybridization among the H 1s, O 2s, and O 2p states. Therefore, the conductivity of LaNiO3(001)/H2 is stronger after adsorption and furthermore, the conductivity of the LaNiO3 surface is better than that of the LaFeO3 surface.


AIP Advances | 2017

A first-principles study of gas molecule adsorption on borophene

Tingting Liu; Yu-Hong Chen; Mei-Ling Zhang; Lihua Yuan; Cai-Rong Zhang; Jing Wang; Jiajia Fan

Borophene, a new two-dimensional material, was recently synthesized. The unique anisotropic structure and excellent properties of borophene have attracted considerable research interest. This paper presents a first-principles study of the adsorption of gas molecules (CO, CO2, NH3, NO, NO2 and CH4) on borophene. The adsorption configurations, adsorption energies and electronic properties of the gas molecules absorpted on borophene are determined, and the mechanisms of the interactions between the gas molecules and borophene are evaluated. We find that CO, CO2, NH3, NO and NO2 are chemisorbed on borophene, while CH4 is physisorbed on borophene. Furthermore, our calculation also indicate that CO and CO2 are chemisorbed on borophene with moderate adsorption energy and NO, NO2 and NH3 are chemisorbed on borophene via strong covalent bonds. Moreover, CO is found as an electron donor, while CO2 an electron acceptor. The chemisorption of CO and CO2 on borophene increases the electrical conductivity, so It seems t...


Materials | 2017

Sc-Decorated Porous Graphene for High-Capacity Hydrogen Storage: First-Principles Calculations

Yu-Hong Chen; Jing Wang; Lihua Yuan; Mei-Ling Zhang; Cai-Rong Zhang

The generalized gradient approximation (GGA) function based on density functional theory is adopted to investigate the optimized geometrical structure, electron structure and hydrogen storage performance of Sc modified porous graphene (PG). It is found that the carbon ring center is the most stable adsorbed position for a single Sc atom on PG, and the maximum number of adsorbed H2 molecules is four with the average adsorption energy of −0.429 eV/H2. By adding a second Sc atom on the other side of the system, the hydrogen storage capacity of the system can be improved effectively. Two Sc atoms located on opposite sides of the PG carbon ring center hole is the most suitable hydrogen storage structure, and the hydrogen storage capacity reach a maximum 9.09 wt % at the average adsorption energy of −0.296 eV/H2. The adsorption of H2 molecules in the PG system is mainly attributed to orbital hybridization among H, Sc, and C atoms, and Coulomb attraction between negatively charged H2 molecules and positively charged Sc atoms.


Journal of Renewable and Sustainable Energy | 2017

The role of electronic donor moieties in porphyrin dye sensitizers for solar cells: Electronic structures and excitation related properties

Shuai-Hu Li; Cai-Rong Zhang; Lihua Yuan; Mei-Ling Zhang; Yu-Hong Chen; Zi-Jiang Liu; Hong-Shan Chen

The development and synthesis of novel dye sensitizers are important for improving the power conversion efficiency of dye-sensitized solar cells (DSSCs) in terms of the role of dye sensitizers in photon to electricity energy conversion processes. How the different moieties tune the electronic structures and related properties is the fundamental issue in designing dye sensitizers. Here, the geometries, electronic structures, excitation properties, and free energy variations for electron injection (EI) and dye regeneration (DR) of porphyrin dye sensitizers SM315, GY50, FA, and KS, containing bulky bis(2′,4′-bis(hexyloxy)-[1,1′-biphenyl]-4-yl)amine, diarylamino group with two hexyl chains, quinolizinoacridine, and triazatruxene as electron donors, respectively, were investigated. The Q bands absorption spectra of FA and KS exhibit a blue-shift relative to those of SM315 and GY50, resulting from weak conjugation effects. The transition configurations and molecular orbital analysis suggest that the electron do...


Acta Optica Sinica | 2014

Research on the controllable frequency octupling technology for generating optical millimeter-wave by external modulator

Xiaoxiao Li; Jianming Shang; Shanglin Hou; Daobin Wang; Yanjun Liu; Jingli Lei; Lihua Yuan

A novel scheme is proposed for frequency octupling mm-wave generation based on an integrated triple-parallel MZM without filter. Two kinds of redundant sidebands are well eliminated by adopting 90 degrees of the electric phase-difference about two sub Mach-Zehnder modulators (sub-MZMs), driven by radio frequency (RF) signal. Then bias of the third sub-MZM is tailored to get best signal. The results indicate that the radio frequency spurious suppression ratio (RFSSR) is as high as 38.3315 dB under the condition of conventional extinction ratio (30 dB). Moreover, optical sideband suppression ratio (OSSR) can reach as high as 61.22878 dB at ideal extinction ratio (100 dB). Compared with previous schemes, it not only optimizes the method but get high RFSSR in the conventional condition.

Collaboration


Dive into the Lihua Yuan's collaboration.

Top Co-Authors

Avatar

Cai-Rong Zhang

Lanzhou University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yu-Hong Chen

Lanzhou University of Technology

View shared research outputs
Top Co-Authors

Avatar

Daobin Wang

Lanzhou University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mei-Ling Zhang

Lanzhou University of Technology

View shared research outputs
Top Co-Authors

Avatar

Zi-Jiang Liu

Northwest Normal University

View shared research outputs
Top Co-Authors

Avatar

Jingli Lei

Lanzhou University of Technology

View shared research outputs
Top Co-Authors

Avatar

Hong-Shan Chen

Northwest Normal University

View shared research outputs
Top Co-Authors

Avatar

Shanglin Hou

Lanzhou University of Technology

View shared research outputs
Top Co-Authors

Avatar

You-Zhi Wu

Lanzhou University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jie Zhang

Beijing University of Posts and Telecommunications

View shared research outputs
Researchain Logo
Decentralizing Knowledge