Lihui Lai
East China Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lihui Lai.
PLOS ONE | 2011
Ling-Zhi Liu; Chongyong Li; Qi Chen; Yi Jing; Richard L. Carpenter; Yue Jiang; Hsiang-Fu Kung; Lihui Lai; Bing-Hua Jiang
MicroRNAs (miRNAs) are endogenous, small noncoding RNAs that play important roles in various cellular functions and tumor development. Recent studies have indicated that miR-21 is one of the important miRNAs associated with tumor growth and metastasis, but the role and molecular mechanism of miR-21 in regulating tumor angiogenesis remain to be elucidated. In this study, miR-21 was overexpressed by transfecting pre-miR-21 into human prostate cancer cells and tumor angiogenesis was assayed using chicken chorioallantoic membrane (CAM). We found that overexpression of miR-21 in DU145 cells increased the expression of HIF-1α and VEGF, and induced tumor angiogenesis. AKT and extracellular regulated kinases (ERK) 1/2 are activated by miR-21. Inhibition of miR-21 by the antigomir blocked this process. Overexpression of the miR-21 target, PTEN, also inhibited tumor angiogenesis by partially inactivating AKT and ERK and decreasing the expression of HIF-1 and VEGF. The AKT and ERK inhibitors, LY294002 and U0126, suppressed HIF-1α and VEGF expression and angiogenesis. Moreover, inhibition of HIF-1α expression alone abolished miR-21-inducing tumor angiogenesis, indicating that HIF-1α is required for miR-21-upregulated angiogenesis. Therefore, we demonstrate that miR-21 induces tumor angiogenesis through targeting PTEN, leading to activate AKT and ERK1/2 signaling pathways, and thereby enhancing HIF-1α and VEGF expression; HIF-1α is a key downstream target of miR-21 in regulating tumor angiogenesis.
Clinical Cancer Research | 2011
Dan Li; Yulan Zhao; Changxing Liu; Xiaona Chen; Yanting Qi; Yue Jiang; Chao Zou; Xiaolong Zhang; Shunying Liu; Xuejing Wang; Dan Zhao; Qiang Sun; Zhenbing Zeng; Marie C.M. Lin; Hsiang-Fu Kung; Hallgeir Rui; Ling-Zhi Liu; Feng Mao; Bing-Hua Jiang; Lihui Lai
Purpose: To investigate expression, regulation, potential role and targets of miR-195 and miR-497 in breast cancer. Experimental Design: The expression patterns of miR-195 and miR-497 were initially examined in breast cancer tissues and cell lines by Northern blotting and quantitative real-time PCR. Combined bisulfite restriction analysis and bisulfite sequencing were carried out to study the DNA methylation status of miR-195 and miR-497 genes. Breast cancer cells stably expressing miR-195 and miR-497 were established to study their role and targets. Finally, normal, fibroadenoma and breast cancer tissues were employed to analyze the correlation between miR-195/497 levels and malignant stages of breast tumor tissues. Results: MiR-195 and miR-497 were significantly downregulated in breast cancer. The methylation state of CpG islands upstream of the miR-195/497 gene was found to be responsible for the downregulation of both miRNAs. Forced expression of miR-195 or miR-497 suppressed breast cancer cell proliferation and invasion. Raf-1 and Ccnd1 were identified as novel direct targets of miR-195 and miR-497. miR-195/497 expression levels in clinical specimens were found to be correlated inversely with malignancy of breast cancer. Conclusions: Our data imply that both miR-195 and miR-497 play important inhibitory roles in breast cancer malignancy and may be the potential therapeutic and diagnostic targets. Clin Cancer Res; 17(7); 1722–30. ©2011 AACR.
Brain Research | 2009
Hongping Xia; Yanting Qi; Samuel S. Ng; Xiaona Chen; Dan Li; Shen Chen; Ruiguang Ge; Songshan Jiang; Guo Li; Yangchao Chen; Ming-Liang He; Hsiang-Fu Kung; Lihui Lai; Marie C. Lin
MicroRNAs (miRNAs) are a class of endogenous, small non-protein coding single-stranded RNA molecules, which are crucial post-transcriptional regulators of gene expression. Previous studies have shown that miRNAs participate in a wide range of biological functions and play important roles in various human diseases including glioma. However, the role of miRNAs in mediating glioblastoma cell migration and invasion has not been elucidated. Using miRNA microarray, we identified miR-146b as one of the miRNAs that is significantly dysregulated in human glioblastoma tissue. We showed that miR-146b overexpression by transfection with the precursor miR-146b, or knock-down by Locked Nucleic Acid (LNA)-modified anti-miR-146b, has no effect on the growth of human glioblastoma U373 cells. However, precursor miR-146b transfection significantly reduced the migration and invasion of U373 cells, while LNA-anti-miR-146b transfection generated the opposite result. Furthermore, we discovered that a matrix metalloproteinase gene, MMP16, is one of the downstream targets of miR-146b. Taken together, our findings suggest that miR-146b is involved in glioma cell migration and invasion by targeting MMPs, and implicate miR-146b as a metastasis-inhibiting miRNA in glioma.
Nucleic Acids Research | 2012
Qing Feng Xu; Ling-Zhi Liu; Xu Qian; Qi Chen; Yue Jiang; Dan Li; Lihui Lai; Bing-Hua Jiang
MiR-145 can regulate cell apoptosis, proliferation, neural development and stem cell differentiation. Previous studies indicate that miR-145 is downregulated in human colon cancer cells. However, the molecular mechanisms of miR-145 used to regulate colon carcinogenesis and angiogenesis remain to be clarified. Here, we show that the expression of miR-145 is downregulated in colon and ovarian cancer tissues and cell lines. MiR-145 inhibits p70S6K1 post-transcriptional expression by binding to its 3′-UTR. The angiogenic factors hypoxia-inducible factor 1 (HIF-1) and vascular endothelial growth factor (VEGF), which are downstream molecules of p70S6K1, are decreased by miR-145 overexpression. P70S6K1 rescues miR-145-suppressed HIF-1 and VEGF levels, tumorigenesis and tumor angiogenesis. Furthermore, the miR-145 level is inversely correlated with the amount of p70S6K1 protein in colon cancer tissues. Taken together, these studies suggest that miR-145 serves as a tumor suppressor which downregulates HIF-1 and VEGF expression by targeting p70S6K1, leading to the inhibition of tumor growth and angiogenesis. The miR-145 rescue could be a rationale for therapeutic applications in colon cancer in the future.
Biochemical and Biophysical Research Communications | 2009
Hongping Xia; Yanting Qi; Samuel S. Ng; Xiaona Chen; Shen Chen; Marong Fang; Dan Li; Yu Zhao; Ruiguang Ge; Guo Li; Yangchao Chen; Ming-Liang He; Hsiang-Fu Kung; Lihui Lai; Marie C.M. Lin
MicroRNAs (miRNAs) are non-protein-coding RNAs that function as post-transcriptional gene regulators. Recent evidence has shown that miRNA plays a pivotal role in the development of many cancers including glioma, a lethal brain cancer. We have recently compared the miRNA expression profiles between normal brain and glioma tissues from Chinese patients by miRNA microarray and identified a panel of differentially expressed miRNAs. Here, we studied the function of one miRNA, miR-15b, in glioma carcinogenesis and elucidated its downstream targets. Over-expression of miR-15b resulted in cell cycle arrest at G0/G1 phase while suppression of miR-15b expression resulted in a decrease of cell populations in G0/G1 and a corresponding increase of cell populations in S phase. We further showed that CCNE1 (encoding cyclin E1) is one of the downstream targets of miR-15b. Taken together, our findings indicate that miR-15b regulates cell cycle progression in glioma cells by targeting cell cycle-related molecules.
Cell Cycle | 2012
Chao Zou; Qing Xu; Feng Mao; Dan Li; Chuanxiu Bian; Ling-Zhi Liu; Yue Jiang; Xiaona Chen; Yanting Qi; Xiaolong Zhang; Xuejing Wang; Qiang Sun; Hsiang-Fu Kung; Marie C. Lin; Fiona C. Wardle; Bing-Hua Jiang; Lihui Lai
MiR-145 is known as a tumor suppressor in numerous human cancers. However, its role in tumor angiogenesis remains poorly defined. In this study, we found that miR-145 was significantly downregulated in breast cancer tissues by using 106 cases of normal and cancer tissues as well as in breast cancer cells. MiR-145 exhibited inhibitory role in tumor angiogenesis, cell growth and invasion and tumor growth through the post-transcriptional regulation of the novel targets N-RAS and VEGF-A. In addition, we provide evidence that the expression levels of miR-145 correlate inversely with malignancy stages of breast tumors, although there is no association between miR-145 levels and hormone receptor levels in breast cancer. Taken together, these results demonstrate that miR-145 plays important inhibitory role in breast cancer malignancy by targeting N-RAS and VEGF-A, which may be potential therapeutic and diagnostic targets.
International Journal of Cancer | 2008
Yanting Qi; Xiaona Chen; Chu-yan Chan; Dan Li; Chonggang Yuan; Fei Yu; Marie C.M. Lin; David T. Yew; Hsiang-Fu Kung; Lihui Lai
Diethylnitrosamine (DEN) is a known carcinogen that can alkylate DNA molecules. In rats, DEN‐induced hepatocellular carcinoma (HCC) model is well established. In this study, we used a two‐dimensional differential gel electrophoresis (2D‐DIGE) system and liquid chromatography/mass spectrometry/mass spectrometry to identify the differential expression protein profiles between the DEN‐induced HCC and healthy liver cells. Western blotting and semiquantitative RT‐PCR were used to further confirm the results. Seventeen differentially expressed spots were identified in DEN‐induced HCC cells. Among all, the most prominent upregulated proteins include the members of the glutathione S‐transferase super family, aldo‐keto reductase superfamily and proteins involved in the response to oxidative stress. Downregulation was observed in 2 proteins that were known to contribute to hepatic dysfunction. This study provides the first comprehensive protein profiling of the DEN‐induced HCC in rats. This model simulates the differential protein expression of human HCC and may be useful for further understanding the mechanism of HCC tumorigenesis.
Cancer Research | 2006
Ming Li; Samuel Sai-ming Ng; Jide Wang; Lihui Lai; Suet Yi Leung; Michel Franco; Ying Peng; Ming-Liang He; Hsiang-Fu Kung; Marie Chia-mi Lin
EFA6A, or Pleckstrin and Sec7 domain protein, is a member of guanine nucleotide exchange factors for ADP ribosylation factor 6 (ARF6). Whereas EFA6A is specifically expressed in the brain, little is known about its function in glial cells or glioma. Here we show that elevated EFA6A expression is detectable in both low-grade and high-grade human glioma tissues samples. To investigate the role of EFA6A in glioma carcinogenesis, we generated a human glioblastoma cell line which conditionally overexpresses EFA6A (U373-EFA6A). We showed that overexpression of EFA6A had no effect on cell proliferation, apoptosis, or cell cycle control. However, as shown by wound healing and in vitro cell invasion assays, it significantly enhanced the cell motility and invasiveness whereas silencing EFA6A by its dominant negative mutant EFA6A(E242K) produced opposite effects. We further showed that ARF6/extracellular signal-regulated kinase (ERK) signaling is required for the EFA6A-mediated cell invasion because both EFA6A(E242K) and ARF6 dominant negative mutant ARF6(T27N) markedly reduced the phosphorylated ERK level and EFA6A-mediated invasive capacity. Consistently, mitogen-activated protein kinase/ERK kinase inhibitor U0126 could abolish the EFA6A-induced cell invasion. These results suggest for the first time a potential role of EFA6A/ARF6/ERK signal cascade in glioma cell migration and invasion.
Cancer Gene Therapy | 2007
Samuel Sai-ming Ng; Yi Gao; David Chau; Guo Li; Lihui Lai; Pei Tang Huang; Cui-fen Huang; JunJian Huang; Yang Chao Chen; Hsiang-Fu Kung; Marie Chia-mi Lin
Glioblastoma multiforme is the most aggressive form of human brain tumor, which has no effective cure. Previously, we have demonstrated that overexpression of the C-terminal fragment of the human telomerase reverse transcriptase (hTERTC27) inhibits the growth and tumorigenicity of human cervical cancer HeLa cells. In this study, the therapeutic effect and molecular mechanisms of hTERTC27-mediated cancer gene therapy were further explored in vivo in established human glioblastoma xenografts in nude mice. We showed that intratumoral injection of adeno-associated virus carrying hTERTC27 (rAAV-hTERTC27) is highly effective in reducing the growth of the subcutaneously transplanted glioblastoma tumors. Histological analyses showed that rAAV-hTERTC27 treatment leads to profound necrosis, apoptosis, infiltration of polymorphonuclear neutrophils and reduced microvessel density in the tumor samples. To study the molecular mechanism of rAAV-hTERTC27-mediated antitumor effects, we analyzed the global gene expression profiles of the rAAV-hTERTC27-treated tumor tissues and cell line as compared with that of the control rAAV-green fluorescent protein-treated samples by DNA microarray. Our results suggest that hTERTC27 exerts its effect through complex mechanisms, which involve genes regulating apoptosis, cell adhesion, cell cycle, immune responses, metabolism, signal transduction, transport, transcription and telomere maintenance.
Cancer | 2009
Ming Li; Jide Wang; Samuel S.M. Ng; Chu-yan Chan; Ming-Liang He; Fang Yu; Lihui Lai; Chao Shi; Yangchao Chen; David T. Yew; Hsiang-Fu Kung; Marie Chia-mi Lin
Epidermal growth factor (EGF) signaling plays a pivotal role in gliomagenesis. The authors previously demonstrated that adenosine diphospate‐ribosylation factor 6 (ARF6), a member of the Ras‐related small guanosine‐5′‐triphospate‐binding protein family, is required for EFA6A‐induced glioma cell migration and invasion. However, the role of ARF6 in EGF signaling is unknown.